2024年1月31日水曜日

三体

昨年12月に録画してあったWOWOWのテレビSFドラマ「三体」(全30話)をようやく視聴した。霊河影視制作(上海)有限公司の作品だ。

原作の三体(第一部)の著者は劉慈欽(1963-)であり,2015年にアジア作家の作品で初めてヒューゴー賞(1953-)の長編小説部門に輝いた。第三部まで出版翻訳されていて,読みたい本リストのトップレベルに置いてある。

最初の10回の前半は,それほどでもなかったけれど,三体のVRゲームのイメージや文化大革命後の紅岸基地のあたりから急に面白くなる。ドラマ三体は,中国の配信プラットホームであるテンセントの作品なのだが,開放改革以前の中華人民共和国の様子をあれくらい描写していてもOKなのか。紅岸基地での物理学的な謎解きやサスペンスの部分がよかった。SFXも素晴らしい。今の日本だとせいぜいがゴジラであって,これほどの骨太の作品はちょっと無理だ。

Netflix版の三体(三部作を予定か)も近々公開されるはずだけれど,どんなものなのだろうか。予告編を見たが,これはこれでいいけれど,やはりいつものアメリカナイズされすぎた映像と世界観が少し鼻につく。中国版の方が主人公もいいし新鮮な感じがする。




2024年1月30日火曜日

Apple ID

朝起きていつものようにMacbook Airを立ち上げると,何だかエラーが出ている。

iCloudにアクセスできないとかなんとか。パスワードを入力してもその先に進めない。パスワードの変更もできない。困った。とても困った。Appleのサポートページには,「iCloud に接続またはサインインできない場合」には丁寧な説明がある。が,そこからIDを入れて,CAPTCHAを通ったのに,そこではねられてしまう。どうやらApple IDがロックされていることに気がついた。

思い当たる節がある。いよいよ非常勤講師も最後なので,金曜日に大学のMacbookAirの掃除をしていた。iCloudにログインしたままだったので,ログアウトしようとした。OSが古くてきびきび動かないのでパスワードも何度か間違えてしまう。授業が始まりそうになったので,途中で作業を中断したまま放置してきた。どうもこれがあやしい。

仕方がないので,大学でもう一度状況を確認してから,心斎橋のアップルストアに行こうと考えた。大学のMacbookAirの方は再起動して簡単にiCloudからログアウトできた。もちろんこれだけでは,AppleIDのロックは解除されない。このため,自分のMacBook Air 2000だけでなく,iPhoneもiPadも,メールは届かないし,アップルストアの予約も出来ないし,ICOCAのチャージも出来ない

心斎橋アップルストアの予約のために電話をしてみた。これまた繋がるまでに15分以上待たされた。忍耐力あるもの達だけが通過できるシステムだ。最初に,アンケート協力用の電話番号を入れさせられ,さらに待ち時間用音楽のジャンルを選択するのだが,そんなサービスはいいからとにかく速く対応してほしい。

結局,心斎橋まで行くことはなくて電話だけでロック解除してもらえた。ただし作業は24時間以内なのでしばらく待たなければならない。月にいるSLIMの電源が復活しているかどうかは,地球から電波を送ってそのレスポンスを見る必要があるのだが,気分はこれと同じだ。30分,1時間,3時間では復活していなかったが,6時間でようやくApple IDが復活してほっとした。めでたし,めでたし。

写真:ようやくここまでたどり着いて原因がわかった地点。

2024年1月29日月曜日

SLIM(2)

SLIM(1)からの続き

SLIMは高度5mあたりで,当初予定(高度1.8m)されたように,LEV-1LEV-2(SORA-Q)という無人探査ロボットシステムを放出した。

LEV-1(2.1kg,26 × 40 × 60 cm)は,2.4m/sで月面に落ちる予定だったが,もし5mからの自由落下ならば,鉛直方向の速度は4m/sになる。自律的に跳躍移動しながら方位制御して地球との直接通信を確立する。

LEV-2(0.25kg,直径8cmの球状から変形可)は,月面のレゴリス上を移動して動作ログを保存し,着陸機SLIMの周辺を撮影して,画像データと動作ログをLEV-1経由で地球に送信する。その結果がSLIM(1)で示した画像である。途中にブロックノイズが入っていることや,解像度はもっと出ているのだが,通信上の制約で落として送信したらしい。

LEV-2別名SORA-Qは,タカラトミーとの共同開発である。この月面に行ったSORA-Qと同じサイズ,同じ変形機能,同じ走行機能・撮影カメラを持った 1/1スケールモデルを2万7千円で販売している。わぉ!思わず注文してしまいそうになる。


写真:SORA-Q実寸モデル(タカラトミーから引用)

2024年1月28日日曜日

SLIM(1)

SLIMは,JAXAの小型月着陸実証機だ。月周回衛星かぐやのデータと照らし合わせながら,月面の目的地にピンポイントで着陸し,無人小型ロボットシステムで月を探査しようというものだ。

2023年9月7日に種子島宇宙センターからH-IIAロケットで打ち上げられ,12月25日には近月点600km,遠月点2000kmの月周回軌道に投入された。1月20日に高度15kmから降下を開始し,世界で5番目の月着陸に成功した。太陽電池からの電源供給ができていないというニュースを聞いたとき,あーこれはちょっと残念かと思った。

1月25日にJAXAによる記者会見が行われた。そこで紹介されていた写真が次のものだ。


写真:LEV-2が撮影したSLIM本体が転倒している様子(JAXAから引用)

SLIMは航法カメラで月面を撮影しながら,自律的な航法誘導制御を行っている。50m上空に至ったところで,障害物を避けるモードに移行する。目標地点は,経度25.2°,緯度-13.3°の2つのクレーターの境界上の斜面である。

月面上50mまでは予定通り順調に飛行していて,この段階でのピンポイント着陸精度は3-4m程度と考えられる。従来の数キロメートルに比べて1/1000の精度である。ところが,2基搭載している500Nのメインエンジ


の1基が脱落して,推力が半分になってしまった。それでも,最終的に秒速1.4mと想定範囲よりゆっくり着陸することになる。

この異常により,横方向の速度が発生してしまい,結果的に55m東にズレた点に接地する。このため,2段階の受け身型の着陸条件を満足できずに機体はそのまま斜面に着陸した。この結果,メインエンジが上向きの転倒状態で静止した。太陽電池は正常な上向きではなく西向きになり,太陽光が当たらないため電源供給ができなくなった。


月の一日は約30日であり,今月の上弦が1月18日,満月が1月26日,下弦は2月3日である。着陸したのは1月20日で経度20°(1.5日相当)だから,下図において地球と緑の線で結ぶ位置の月面上に着地している。これは,月の一日でいえば午前9時に相当する。1月24日ごろにSLIM着地点は正午を迎え,2月1日には日没となる。月面上のSLIMに西日が差して,太陽電池が復活する可能性があるのは,2月1日までということか。



図:SLIMと太陽の位置関係(実際には経度20°の緑線まで回転)

追伸:1月29日に,ようやく西日で電源が復活したようだ。新しい画像も撮影している。

2024年1月27日土曜日

月の一日

2024年1月26日,今日は満月だ。非常勤の授業が終って平端の駅の1番ホームへ向かう午後3時半すぎ,乗客のかたまりがどんどんホームから階段を下りてきて引きも切らない。そうか,今日は天理教の春季大祭の日だった。夜は冷え込んでいるけれど空は曇っていて月は見えない。

SLIMの記事を書くためには,月の一日について調べておかなければならない。

(1)月の公転周期
ケプラーの第三法則というのか,ニュートンの運動方程式を解けば,公転周期は$T=\dfrac{2\pi}{\sqrt{GM}} a ^{3/2}$である。$G$は万有引力定数,$M$は地球の質量,$a$は月の軌道の長半径である。$\sqrt{GM}=g R$であり,重力加速度$\ g=9.82 {\rm m/s}^2$,地球半径$\ R= 6.37 \times 10^6 {\rm m}$を使えばよい。$a\ $の値は遠地点と近地点の平均値であり,$a=3.83\times 10^8 {\rm m}$。これらから,$T=27.3$日となる。

(2)月の一日の長さ
潮汐作用の結果,月の自転周期と公転周期$\ T\ $は一致し,地球から見える月は常に同じ面になる。月の周期の間に地球が太陽の回りを公転するため,月の一日,例えば日の出から次の日の出のまでの時間$\ t\ $は$\ T\ $ではなく,それよりも長くなる。地球の公転角速度を$\ \Omega$,月の公転角速度を$ \omega$ とすると,$\Omega t = \omega (t -T) $が成り立つ。これから $t=T/(1-\Omega/\omega) = 27.3/(1-27.3/365) = 29.5 $日が得られる。これを朔望月という。



図:月の一日(朔望月)

2024年1月26日金曜日

正方形の長さ

都道府県の長さからの続き

正方形の領域$\ (x, y), \ 0 \le x \le 1$,$0 \le y \le 1\ $を考えて,この中の2点を$\ (x_1,y_1),\ (x_2, y_2)\ $とする。これらの座標が$\ p_0(z)=1\ (0 \le z \le 1),\  =0\ (z <0,\  1 < z)\ $で一様分布している。

このとき,確率変数の和と差の説明により,$x=x_1-x_2\ $と$\ y=y_1-y_2\ $は,$p(z)=1+z\ (-1 \le z \le 0),\  =1-z\ (0 \le z \le 1)\ $という確率分布になる。また,$X=(x_1+x_2)/2\ $と$Y=(y_1+y_2)/2\ $の確率分布は,$q(z)=z\ (0 \le z \le 1),\  =2-z\ (1 \le z \le 2)\ $となる。

そこで,2点の期待値は,$d=\int \int \int \int \sqrt{(x_1-x_2)^2+(y_1-y_2)^2} \ p_0(x_1) p_0(x_2) p_0(y_1) p_0(y_2) \ dx_1 dx_2 dy_1 dy_2 $
$\quad = \int \int \int \int \sqrt{x^2+y^2}\  p(x) p(y) q(X) q(Y) \ dx dy dX dY$
$\quad = \int \int \sqrt{x^2+y^2} \ p(x) p(y) \ dx dy = 4 \int_0^1 \int_0^1 (1-x)(1-y) \sqrt{x^2+y^2} \ dx dy$

ここで,$y = x \sinh z \ $と変数変換して,$y\ $の積分すなわち$z\ $での積分を先に行う。このとき,$y: 0\rightarrow 1\ $より,$z:0 \rightarrow \sinh^{-1}(1/x) = z_x\ $ $\bigl( \cosh z_x = \sqrt{1 + (1/x)^2} \ \bigr)$ であり,$\sqrt{x^2+y^2}= x \cosh x\ $と$\ dy = x\ \cosh z\ dz\ $が成り立つ。

$f(x) = \int_0^1 (1-y) \sqrt{x^2+y^2} dy = \int_0^{z_x} (1 - x \sinh z ) \cdot x \cosh z \cdot x \cosh z\  dz$
$\displaystyle \quad = \frac{x^2}{2} \int_0^{z_x} (1 + \cosh 2z )\ dz -\frac{x^3}{3} \Bigl[ \cosh^3 z \Bigr]_0^{z_x}$
$\displaystyle \quad =  \frac{x^2}{2}  \Bigl( \sinh^{-1}(1/x) + \sinh z_x \cosh z_x \Bigr) -\frac{x^3}{3} \Bigl( \cosh^3 z _x -1 \Bigr)$
$\displaystyle \quad = \frac{x^2}{2} \sinh^{-1}(1/x) + \frac{1}{2} \sqrt{1+x^2} +\frac{1}{3} x^3 - \frac{1}{3} (1+x^2)^{3/2}$

次に,これに$(1-x)$をかけて,$x$で積分してから4倍すれば$d$が求まる。
$\displaystyle d= 4\int_0^1 (1-x) \Bigl\{ \frac{x^2}{2} \sinh^{-1}(1/x) + \frac{1}{2} \sqrt{1+x^2} +\frac{1}{3} x^3 - \frac{1}{3} (1+x^2)^{3/2} \Bigr\} dx$

$g_1(x)=4 \int (1-x) \frac{x^2}{2} \sinh^{-1}(1/x) \ dx $
$\quad = \frac{1}{6}(2+2x-x^2)\sqrt{1+x^2} +\frac{1}{6}(-2+4x^4-3x^4)\sinh^{-1}x$
$g_2(x)=4 \int (1-x) \frac{1}{2} \sqrt{1+x^2} \ dx = -\frac{1}{3} (2-3x+2x^2) \sqrt{1+x^2} + \sinh^{-1}x$
$g_3(x)=4 \int (1-x) \frac{1}{3} x^3 \ dx = \frac{1}{3} x^4 -\frac{4}{15}x^5$
$g_4(x)=4 \int (1-x) \frac{-1}{3} (1+x^2)\ ^{3/2} \ dx $
$\quad = \frac{1}{30} (8-25x+16x^2-10x^3+8x^4) \sqrt{1+x^2} -\frac{1}{2} \sinh^{-1}x$

$\therefore g(x) = g_1(x)+g_2(x)+g_3(x)+g_4(x) = \frac{1}{15}(5 x^4 -4x^5) +$
$\quad  \frac{1}{30}(8x^4-10x^3-9x^2+15x-2)\sqrt{1+x^2} +\frac{1}{6}(-3x^4+4x^3+1)\sinh^{-1}x$

これから,$d=g(1)-g(0)=\frac{1}{15}\Bigl\{2+\sqrt{2}+5 \log(1+\sqrt{2}) \Bigr\}= 0.521405\ $が得られた。


2024年1月25日木曜日

確率変数の和と差

都道府県の長さからの続き

2つの確率変数$X$と$Y$がある。それぞれはある確率密度分布関数$p(x),\ q(y)$に対応している。このとき,確率変数$X \pm Y$はどのような確率分布をするかという問題を考えたい。

これについては,緑川章一さんのノートが参考になった。やはり専門の近い物理屋さんが書いたものは読みやくて助かる。これをまとめてみる。

$X$と$Y$が,それぞれ一様分布,$p(x)  =  1 \ (0 \le x \le 1)$ ,$q(y)  =  1 \ (0 \le y \le 1)$をしている。このとき,確率変数$Z$を $Z=X \pm Y$として,その確率分布関数の $r_{\pm}(z)$を求める。これは,$r_{\pm}(z) = \int  \int  p(x) q(y ) \delta(z-(x \pm y)) \ dx\ dy =  \int_{0}^{1} p(z \mp y) q(y) \ dy $となる。
なお,この$\ z \ $の範囲は,$r_{+}(z) \rightarrow 0 < z < 2$,$r_{-} \rightarrow -1 < z < 1 $ である

$\therefore \ r_{+}(z) \ \rightarrow \ ( 0 \le y \le 1 \ \&\& \  z-1 \le y \le z )$,つまり,
$r_{+}(z) = z\ (0 < z < 1),r_{+}(z) = 2-z \ (1 < z < 2)$
$\therefore \ r_{-}(z) \ \rightarrow \ ( 0 \le y \le 1 \ \&\& \  -z \le y \le 1-z )$,つまり,
$r_{-}(z) = 1+z \ (-1< z <0),r_{-}(z) = 1-z \ (0 < z < 1)$

図:確率分布関数の範囲

2024年1月24日水曜日

積分漸化式

積分(3)からの続き

三角関数の積分の漸化式が教科書に載っていたことをいまごろ思い出した。これならば双曲線関数にも簡単にあてはめられるはずだ。

$I_n = \int \sin^n x \ dx =  (-\cos x) \sin^{n-1} x - \int  (-\cos x) (n-1) \sin^{n-2} x \cos x\ dx$
$\quad = (-\cos x) \sin^{n-1} x + (n-1) \int (1-\sin^2 x) \sin^{n-2} x \ dx$
$\quad = (-\cos x) \sin^{n-1} x + (n-1) (I_{n-2} - I_n )$
$\therefore I_n = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} I_{n-2} \quad (n \ge 2) $

$I_n = \int \cos^n x \ dx =  (\sin x) \cos^{n-1} x - \int  (\sin x) (n-1) \cos^{n-2} x (-\sin x) \ dx$
$\quad = (\sin x) \cos^{n-1} x + (n-1) \int (1-\cos^2 x) \cos^{n-2} x \ dx$
$\quad = (\sin x) \cos^{n-1} x + (n-1) (I_{n-2} - I_n )$
$\therefore I_n = \frac{1}{n} \sin x \cos^{n-1} x + \frac{n-1}{n} I_{n-2} \quad (n \ge 2) $

$I_n = \int \tan^n x \ dx =   \int  (\frac{1}{\cos^2 x} -1) \tan^{n-2} x \ dx$
$\quad = \int (\tan x)' \tan^{n-2} x\ dx -  \int \tan^{n-2} x \ dx$
$\therefore I_n = \frac{1}{n-1}\tan^{n-1} x - I_{n-2}  \quad (n \ge 2) $

$I_n = \int \sinh^n x \ dx =  (\cosh x) \sinh^{n-1} x - \int  (\cosh x) (n-1) \sinh^{n-2} x \cosh x\ dx$
$\quad = \cosh x\ \sinh^{n-1} x - (n-1) \int (1+\sinh^2 x) \sinh^{n-2} x \ dx$
$\quad = \cosh x\ \sinh^{n-1} x - (n-1) (I_{n-2} + I_n )$
$\therefore I_n = \frac{1}{n} \cosh x\ \sinh^{n-1} x - \frac{n-1}{n} I_{n-2} \quad (n \ge 2) $

$I_n = \int \cosh^n x \ dx =  (\sinh x) \cosh^{n-1} x - \int  (\sinh x) (n-1) \cosh^{n-2} x \sinh x \ dx$
$\quad = \sinh x \cosh^{n-1} x - (n-1) \int (\cosh^2 x -1) \cosh^{n-2} x \ dx$
$\quad = \sinh x \cosh^{n-1} x + (n-1) (I_{n-2} - I_n )$
$\therefore I_n = \frac{1}{n} \sinh x \cosh^{n-1} x + \frac{n-1}{n} I_{n-2} \quad (n \ge 2) $

$I_n = \int \tanh^n x \ dx =   \int  (1-\frac{1}{\cosh^2 x} ) \tanh^{n-2} x \ dx$
$\quad = -\int (\tanh x)' \tanh^{n-2} x\ dx + \int \tanh^{n-2} x \ dx$
$\therefore I_n = -\frac{1}{n-1}\tanh^{n-1} x + I_{n-2}  \quad (n \ge 2) $

2024年1月23日火曜日

藤岡作太郎

就寝中にトイレに行きたくなるとき,眠りが浅くなって夢を見る。いや,半分覚醒してまどろんでいる状態なので夢ではないのかもしれない。こうした夢と覚醒がシュレーディンガーの猫のようになって区別しにくい時間がしばしば訪れる。

昨晩のその時間は,「鈴木大拙」についての説明を誰かに一生懸命しようとしていた。ただ,名前が思い出せないのである。えーっと,金沢出身で,西田幾多郎と友達で,いるでしょう,禅の研究で(善の研究ではない)海外に名を馳せた,誰だったか,ほらあの(静かな水面のある落ち着いた記念館のイメージを想起しつつ),えーっと,三太郎とよばれていたから,本名は○太郎のはずだけれど,それではわからないし・・・

そうこうしているうちに目が覚めてトイレに行ったが名前の記憶はオフのまま。再び布団に潜ってもまだ思い出せない。そのまま眠りに入ると,明け方近くの夢の中でようやく思い出すことができた。あ,鈴木大拙だ!朝起きても思い出した量子状態は崩壊することなく維持されていた。


三太郎というのは誰だったろうかと,Wikipediaで鈴木大拙=貞太郎(1870-1966)を調べてみると「同郷の西田幾多郎(1870-1945)、藤岡作太郎(1870-1910)とは石川県専門学校( 1881- 第四高等中学校 1887-)以来の友人であり、鈴木、西田、藤岡の三人は加賀の三太郎と称された」とあった。

藤岡作太郎はどんな人かとさらに調べると,日本で最初の文学博士,国文学(国文学全史平安朝篇)の人だった。その長男が物理学者で物理教育学会の会長も務めた藤岡由夫(1903-1976),孫がレーザ工学の藤岡知夫(1935-2022),ひ孫がテレビでおなじみの指揮者の藤岡幸夫(1962-)だった。

藤岡作太郎の長女の綾が,長男の藤岡由夫の友人の中谷宇吉郎(1900-1962)と結婚しているが若くして亡くなっている。孫の藤岡知夫の妻は原子物理学の菊池正士(1902-1974)の長女であり,これをたどると箕作家(みつくりけ)を通じて初代阪大総長の長岡半太郎(1865-1950)までつながる。なお,長岡半太郎と本多光太郎(1870-1954)と鈴木梅太郎(1874-1943)は理研の三太郎だ。

2024年1月22日月曜日

積分(3)

都道府県の長さからの続き

次の積分 $I_n=\int x^n \sqrt{x^2 + y^2} \ dx $  が必要なのであった。
そこで,$x=y\ \sinh z$と変数変換して,$dx = y \cosh z\ dz $と$\sqrt{x^2+y^2} = y \cosh z$
から,$I_n = y^{n+2} \int \sinh^n z\ \cosh^2 z\ dz$となる。後で必要になるものとして,$J_n = \int \sinh^n z \ dz $を定義しておく。

$I_0 = y^2 \int \cosh^2 z\  dz = \frac{1}{2} y^2  \int (1 + \cosh 2z) \ dz $
$=  \frac{1}{2} y^2 (z + \frac{1}{2} \sinh 2 z) =  \frac{1}{2} y^2  \sinh^{-1}(x/y) + \frac{1}{2}x \sqrt{x^2+y^2} $

$I_1 = y^3 \int  \sinh z\ \cosh^2 z\ dz =  y^3 \int t^2 dt = \frac{1}{3}\bigl( \sqrt{x^2+y^2}\bigr)^3$

$I_2 = y^4 \int \sinh^2 z\ \cosh^2 z \ dz = y^4 \int (\sinh^2 z + \sinh^4 z )\ dz = y^4 (J_2 + J_4)$

$I_3 = y^5 \int \sinh^3 z\ \cosh^2 z\ dz = y^5 \int (\sinh^3 z + \sinh^5 z )\ dz = y^5 (J_3 + J_5)$

などとなる。

$J_2 = \int \sinh^2 z \ dz = \frac{1}{2} \int (\cosh 2z -1) \ dz =  \frac{1}{4} \sinh 2z - \frac{1}{2} z$

$J_3 = \int \sinh^3 z \ dz = \int (\cosh^2 z -1) \sinh z \ dz = \frac{1}{3} \cosh^3 z - \cosh z$

$J_4 =  \int \sinh^4 z \ dz = \frac{1}{4} \int (\cosh 2z -1)^2 \ dz = \int \bigl( \frac{3}{8}-\frac{1}{2}\cosh 2z + \frac{1}{2} \cosh 4z  \bigr) \ dz$
$\quad = \frac{1}{8} \sinh 4z -\frac{1}{4} \sinh 2 z + \frac{3}{8}z $

結局$J_n$がシステマティックに計算できればよいということか。続く。

2024年1月21日日曜日

双曲線関数

都道府県の長さからの続き

一様分布の確率密度関数で正方形の内部のランダムな2点の平均距離を求める際に,面倒な積分が必要になる。このとき双曲線関数への変数変換を行うのだが,久しぶりに使うと勘が鈍っていてなかなか計算が進まない。ので,復習する。

$\sinh x = \dfrac{e^x - e^{-x}}{2},\ \  \cosh x = \dfrac{e^x + e^{-x}}{2},\ \  \tanh x = \dfrac{\sinh x}{\cosh x} = \dfrac{e^x - e^{-x}}{e^x + e^{-x}}$
$\cosh^2 x - \sinh^2 x = 1, \ \ \tanh^2 x = 1 - \dfrac{1}{\cosh^2 x},\ \ \dfrac{1}{\tanh^2 x} = 1 +  \dfrac{1}{\sinh^2 x}$
$\frac{d}{dx}\sinh x = \cosh x,\ \ \frac{d}{dx}\cosh x = \sinh x, \ \  \frac{d}{dx} \tanh x = \dfrac{1}{\cosh^2 x}$
$\int \sinh x \ dx= \cosh x,\ \ \int \cosh x \ dx = \sinh x, \ \  \int \tanh x\ dx = \log( \cosh x)$


$\sinh ( x \pm y )= \sinh x \cosh y \pm \cosh x \sinh y$
$\cosh ( x \pm y )= \cosh x \cosh y \pm \sinh x \sinh y$
$\tanh ( x \pm y )= \dfrac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$

$\sinh 2x  = 2 \sinh x \cosh x = 2 \sinh x \sqrt{1 + \sinh^2 x}$
$\cosh 2x = 2 \cosh^2 x - 1 = 2 \sinh^2 x + 1$

$\sinh 3x  = \sinh^3 x + 3 \sinh x \cosh^2 x$
$\cosh 3x = \cosh^3 x + 3 \cosh x \sinh^2 x$

$\sinh 4x  = 4 \sinh^3 x \cosh x + 4 \sinh x \cosh^3 x$
$\cosh 4x =  \sinh^4 x + 6  \sinh^2 x +\cosh^2 x + \cosh^4 x$

$\sinh^{-1}x = \log ( x + \sqrt{x^2+1} ) = -\log(\sqrt{x^2+1} - x)$
$\cosh^{-1} x = \log (x + \sqrt{x^2-1}) = \log(x - \sqrt{x^2-1})$
$\tanh^{-1} x = \dfrac{1}{2} \log{\dfrac{x+1}{x-1}}$

$\frac{d}{dx}\sinh^{-1} x = \dfrac{1}{\sqrt{x^2+1}},\ \ \frac{d}{dx}\cosh^{-1} x = \dfrac{1}{\sqrt{x^2-1}}, \ \  \frac{d}{dx} \tanh^{-1} x = \dfrac{1}{1-x^2}$

$\int \sinh^{-1} x \ dx= x \sinh^{-1} x - \sqrt{x^2+1}$
$\int \cosh^{-1} x \ dx = x \cosh^{-1} x  - \sqrt{x^2-1}$
$\int \tanh^{-1} x\ dx = x \tanh^{-1} x + \frac{1}{2}\log(1-x^2)$



図:双曲線関数の定義

2024年1月20日土曜日

都道府県の長さ

ACTIVE GALATTICさんが,次のように書いていた。
中核都市の金沢と被害が激しい輪島は東京と水戸くらい離れていると石川県の広さを説明する投稿を先日見かけたが、石川県の広さは34~35位とランキング下位なので、むしろ東京や大阪が都道府県としては異様に狭いと認識すべきなのだろう
面積と距離が微妙に絡まっていて,ややモニョる。ある図形が与えられたときに,その面積ではなくて,長さを図形の大きさの指標として与えることはできるだろうか。地図上の領域だと東西南北の端点を考えて,南北間距離,東西間距離を抽出できるが,これでは2つの数字の組になる。あるいは図形の周長も考えられるが,フラクタル的な図形だと面積が等しくても周長はいくらでも長くできる。

そこで考えたのが次のような指標だ。図形を格子状の正方形に分割する。これらの正方形の全ての対を考え,各対の正方形の中心間の距離の平均値を求める。分割する正方形のサイズを小さくした極限として,一つの長さが定まるのではないか。(方法1)

検索してみると,もっとスマートな方法があった。図形内の点をランダムに選ぶ。その際に縦横方向にそれぞれ座標値が一様分布であるとした確率分布を仮定する。こうして選んだ2点間の距離の期待値を求めればよいというものだ。(方法2)

まず,方法1のプログラムをJuliaで作成して計算してみた。
a=zeros(Int64,1000001,2)

function ju(a,m,n)
  k = 0
  for i in 1:m
    for j in 1:n
      k = k + 1
      a[k,1] = i
      a[k,2] = j
    end
  end
end

function su(a,m,n)
  mn = m*n
  sum = 0
  for i = 1:mn
    for j = i:mn
      sum = sum + sqrt((a[i,1]-a[j,1])^2+(a[i,2]-a[j,2])^2)
    end
  end
  return sum/binomial(mn,2)
end

m=800
n=800
ju(a,m,n)
@time su(a,m,n)/m
n=   25    time= 0.016720 0.521829
n=   50 time= 0.018188 0.521513
n= 100 time= 0.065998 0.521433
n= 200 time= 0.788281 0.521412
n= 400 time= 12.1924   0.521407
n= 800 time= 198.615   0.521405

nは正方形の1辺の格子点の数,timeは計算時間(秒)であり,最後が計算結果の平均長である。
方法2による理論値が解析的に得られており,( 2+√2+5 log(√2 + 1) )/15 = 0.521405 なので,nを増やすとともに理論値に収束し,n=800では理論値に一致している。

m = 50; n = 50;
a = Flatten[Table[{i, j}, {i, 1, m}, {j, 1, n}], 1];
Timing[Sum[
     Sqrt[(a[[i, 1]] - a[[j, 1]])^2 + (a[[i, 2]] - a[[j, 2]])^2], 
   {i, 1, n*n}, {j, i, n*n}]/Binomial[n*n, 2]/n // N]

Mathematicaでは,若干コードが簡単になるけれど,時間は n=50 で 12.4801秒と,600倍以上かかってしまった。

(付)このコードはそのまま乱数による計算に置き換えることもできる。Juliaでは,a[k,1] = rand(),a[k,2] = rand() として最後の結果の/nを除く。Mathematicaでは,Tableの中身を{i,j}から{RandomReal[1], RandomReal[1]}に置き換えて最後の結果の/nを除く。

[1]地域内距離(腰塚武志)

2024年1月19日金曜日

トリチウム(3)

トリチウム(2)からの続き

非常勤で担当している物理科学概説の授業も,後3回を残すばかりになった。最後の授業日の準備をしているが,テーマは原康夫さんの教科書である第5版 物理学基礎の第25章「原子核と素粒子」だ。

トリチウムのベータ崩壊で話を終らそうと思ったら,宇宙線と上層大気の衝突によって年間に生成されるトリチウム量のところでつまづいてしまった。茨城大学の鳥養さんの資料では,年間72 PBq/y(PBq=ベタベクレル=10^15ベクレル)生成されるとなっている。

そもそも,ベクレルは単位時間当たりの崩壊数なので時間の逆数になっている。これをさらに時間で割った量が生成量であるというのはどういうことかと,かつて理解していたところで再度引っかかってしまった。

70歳を過ぎるとこんなことが増えていくのだろう。一日中家の中で失せ物を探している時間がどんどん増加していくのと同様に,頭の中の失せ物を探す時間が増えていくのだ。こんなときに,生成AIが頼りになれば有難いのだけれど,これが現時点ではあまりあてにはならない。

さて,時間$\Delta t$の間に崩壊する原子核の数は,$\Delta N = \lambda N \Delta t$である。$\lambda = \frac{0.693}{T_{1/2}}$は崩壊定数であり,時間の逆数の次元を持っている。それは不安定な原子が崩壊する確率を表している。言い換えれば,放射性同位元素の物質量$N$に$\lambda$を掛けたものがその物質のベクレル数に等しいことから,放射性同位元素の物質量を,単位が異なるベクレル数で表現しても差し支えないだろうという考えだ。

あるいは,本質的に時間とともに変化する存在である放射性同位元素の量を表現するのに,時間的に不変な状態を想定しているモルやkgで表すのは適当ではなく,むしろその時点でのベクレル数で表わした上で,今後はこの割合で減少していくということに注意を喚起するという習慣があると善意に理解しよう。

まあ,トリチウムが放射平衡している場合は,時間とともに変化しないけれども,いつ何時,核施設の事故があるかもしれない。

さて,2000年のUNSCEARの資料[1] に,Table 4 Production rates and concentrations of cosmogenic radionuclides in the atmosphereという表がある。これによると,宇宙線によるトリチウムの単位面積,単位時間当たりの生成数は,$ 2500 /({\rm m^2 s}) $ であり,地球表面積,$ 5.1 \times 10^{14} {\rm m^2} $との積から,1秒間に,$\mu = 1.28 \times10^{18} $個/sのトリチウム原子が生成される。1年間($y =3.15 \times 10^{7} {\rm s} $)では $\mu y = 4.0 \times 10^{25}$個となる。一方,トリチウムの崩壊定数は,$\lambda = 0.693/ ( 12.3 × 3.15 × 10^7) /{\rm s} $ なので,$\mu y \lambda $によってベクレルに換算すれば,$72 \times 10^{15} {\rm Bq}$が得られる。

また,この自然の機構によって地球上に存在するトリチウムの総量$N(t)$は,次の微分方程式$\frac{dN(t)}{dt}=-\lambda N(t) + \mu $の平衡解 $N(\infty)$で与えられ,$N(\infty) = \frac{\mu}{\lambda} = 7.2 \times 10^{26}$個= $1.28 \times 10^{18}$Bqである。

これを使って,大気中の平均トリチウム濃度を計算してみる。資料[1]では対流圏の体積が,$3.62 \times 10^{18} {\rm m^3}$と与えられ,$0.35 {\rm Bq / m^3}$となる。ところが資料[1]では,$1.4 {\rm mBq / m^3}$となっていて,何だか250倍大きくなってしまうのだ。なんで?

あら,表にはfractional amount in atomosphereというのがあって,その係数が1/250=0.004になっていた。トリチウムはほとんどHTOの形態で存在しているので,ほとんどが雨水/海水に溶けてしまうということなのかもしれない。

図:トリチウムの概念図(東京電力から引用

[2]環境トリチウムについて(鳥養祐二)
[3]トリチウムの環境動態(百島則幸)
[4]大気中トリチウム濃度の変遷と化学形態別測定(宇田達彦・田中将裕)


2024年1月18日木曜日

コンストラクタ理論

コンストラクタ理論というものがあることを知った。知るには段階があるのだけれど,これは名前とボンヤリした意味がわかるという第1段階。自分の頭の中で「知っている」というのはだいたいこれにあたる。

対象が,具体的な事物なのか,抽象的な事柄なのかによっても話が違ってくる。例えば,有馬温泉知ってますかという問いに対して,(1) 名前を聞いたこともない,(2) 名前は聞いたことがある,(3) その属性(場所・由来)なども知っている,(4) 写真や動画での紹介を見た,(5) 現地を訪問したことがある,(6) 宿泊して観光したことがある,(7) ある程度の期間滞在して暮らしていた,(8) 長い間にわたって現地で生活していた。などなど。

今では,(1)-(4) は簡単に実現できる。仮想空間技術が進歩すれば,(5) や場合によっては(6) あたりまでは手が届くようになるのかもしれない。視聴覚以外の体験はまだ難しい。食べ物について同様に自分が知っているかどうかという問題を考えると,あるものを食べるという体験と結びついた記憶の話や,文化的な多様性のなかで様々な派生物の範囲をどこまで理解してそのなかで位置づけることができているかなど,さらに話が複雑になってくる。

ある事柄に関するプロフェッショナルというのは,結局どれだけの具体的な体験を積み重ねてきてそれらをネットワークする知恵を発達させているのかということに帰着するような気がする。

そんなわけで,このブログのように浅く(広くもない,人間の興味はかなり限定される)知った気分になっているというのに,どれほどの意味があるのかということを改めて反省する。

話が,全然進まない。コンストラクタ理論の件である。受け売りの要約では次のようになる。生成AIや翻訳ツールがあるので,十分な読解を経なくてもわかったようなまとめができてしまう。それはそれで問題なのだ。抽象的な事柄の意味を知っているかどうかというのは,多次元空間の連続的なスペクトルのどこに位置するかみたいな面倒な話にはなりそうだ。
コンストラクター理論とは、物理学における基本法則を定式化する新しいアプローチである。世界を軌道、初期条件、力学的法則で記述する代わりに、構成理論では、どのような物理的変換が可能で、どのような変換が不可能か、そしてその理由についての法則を記述する。この強力な転換は、現在は本質的に近似的とみなされているあらゆる興味深い分野を基礎物理学に取り込む可能性を秘めている。例えば、情報、知識、熱力学、生命の理論などである。

量子計算理論の創始者の一人であるデイヴィッド・ドイッチュ(1953-)が2012年に提案し,キアラ・マレットとともにオックスフォード大学で展開している理論である。

[1]Constructor Theory (D. Deutsch, 2012)
[2]Constructor Theory of Information (D. Deutsch, C. Marletto, 2014)
[3]Constructor Theory of Life (C. Marletto, 2014)
[4]Constructor Theory of Probability (C. Marletto, 2015)

2024年1月17日水曜日

TESCREAL

億万長者とSFからの続き

TESCREALという言葉が,前回示したSF的な未来に5兆ドルを賭けている億万長者(ビリオネア)の特徴を説明するものだった。

TESCREALは,トランスヒューマニズム(Transhumanism),エクストリピアニズム(Extropianism),シンギュラリタリアニズム(Singularitarianism)などの伝統的な思想と現代のトランスヒューマニスト的な思想を横断する信念体系を示す頭字語だ。この用語は、テクノロジーの使用が架空のテクノユートピアの未来に関心を持つ人々を指す。

トランスヒューマニズム(Transhumanism): これは、人間はテクノロジーを使って肉体的にも精神的にも向上することができるという信念である。トランスヒューマニズムの信奉者たちは、より知的で、よりパワフルで、より自由な、新しいタイプの存在を創造できると信じている。
エクストロピアニズム(Extropianism): トランスヒューマニズムの一派で、進歩という考え方に重点を置く。エクストロピアンは、未来は明るいと信じており、テクノロジーを活用することで、これまでのどんなものよりも優れた世界を創造できると考えている。
特異点主義(Singularitarianism): これは、人工知能がやがて人間の知能を凌駕するほど高度になるという信念である。その結果、肯定的なものも否定的なものも含め、さまざまな結果がもたらされる可能性がある。これがユートピアにつながると考えるシンギュラリタリアンもいれば、人類の終焉につながると考えるシンギュラリタリアンもいる。
宇宙主義(Cosmism): 宇宙は基本的に合理的で理解可能であるという信念である。宇宙主義者は、科学と理性を使って宇宙を理解し、その知識を使って私たちの生活を向上させることができると信じている。
合理主義(Rationalism): 理性は知識を獲得し意思決定するための最良の方法であるという信念である。合理主義者は、理性を使って感情や偏見を克服し、自分自身や他者のために最善の決断を下すべきだと信じている。
効果的利他主義(Effective Altruism):これは、最も多くの人々のために最も良いことをするために、私たちの資源を使うべきだという信念である。効果的利他主義者は、他者を助ける最善の方法を決定するために証拠と理性を用いるべきであり、最大の善を行うためには犠牲をいとわないと考える。
長期主義(Longtermism): これは、短期的なことよりも長期的な未来に焦点を当てるべきだという信念である。長期主義者は、たとえ短期的には犠牲を払っても、長期的には人類に利益をもたらす決断を下すべきだと考える。

[1] 木澤佐登志『闇の精神史』(logical cypher scape2)

2024年1月16日火曜日

令和6年能登半島地震(3)

令和6年能登半島地震(2)からの続き

能登半島地震発災2週間目。令和6年能登半島地震による被害状況等について(令和6年1月15日08:30現在),これは毎日更新されている。
1p 1 地震の概要(気象庁情報:1 月 15 日 8:30 現在)

2p 2 人的・住家被害等の状況(消防庁情報:1 月 15 日 8:30 現在)

3p 3 避難所の状況(内閣府情報:1 月 15 日 6:00 現在)

3p 4 その他の状況
3p (1) ライフラインの状況
10p (2) 原子力施設関係(原子力規制庁情報: 1月 15 日 07:30 現在)
12p (3) 道路(国土交通省情報:1 月 15 日 6:00 現在)
13p (4) 鉄道(国土交通省情報:1 月 15 日 8:00 現在)
13p (5) 航空(国土交通省情報:1 月 15 日 6:00 現在)
14p (6) 物流・自動車(国土交通省情報:1 月 15 日 5:30 現在)
15p (7) 海事(国土交通省情報:1 月 15 日 5:00 現在)
15p (8) 河川(国土交通省情報:1 月 15 日 6:00 現在)
16p (9) ダム(国土交通省情報:1 月 15 日 6:00 現在)
16p (10) 海岸(国土交通省情報: 1 月 15 日 7:00 現在)
17p (11) 砂防(国土交通省情報: 1 月 15 日 7:00 現在)
17p (12) 港湾(国土交通省情報:1 月 15 日 5:30 現在)
18p (13) 公園・都市(国土交通省情報: 1 月 15 日 6:30 現在)
18p (14) 住宅・建築物(国土交通省情報: 1 月 15 日 7:00 現在)
19p (15) 下水道関係(国土交通省情報: 1 月 15 日 7:00 現在)
19p (16) 観光(国土交通省情報: 1 月 15 日 5:30 現在)
20p (17) 医療関係(厚生労働省情報:1 月 15 日 05 時 00 分時点)
21p (18) 社会福祉施設等関係(厚生労働省情報:1 月 15 日 7:00 現在)
24p (19) 保健・衛生関係(厚生労働省情報:1 月 15 日 7:00 現在)
24p (20)薬局、薬剤師、輸血用血液製剤、毒物劇物関係(厚生労働省情報:1 月 15 日 7:00 現在)
25p (21) 工業用水関係(経済産業省情報:1 月 15 日 7:30 現在)
25p (22) 製造業等(経済産業省情報:1 月 15 日 7:30 現在)
25p (23) 中小企業(経済産業省情報:1 月 15 日 7:30 現在)
26p (24) 児童福祉施設等関係(こども家庭庁情報:1月 15 日 8:10 現在)
27p (25) 障害児施設関係(こども家庭庁情報:1月 15 日 8:10 現在)
27p (26) 農林水産関係(農林水産省情報:1月 15 日 7:30 現在)
31p (27) 文部科学省関係(文部科学省情報:1 月 14 日 12:00 現在)
32p (28) 郵政関係(総務省情報:1 月 15 日 08:00 現在)
33p (29) 法務関係(法務省情報:1 月 15 日 7:30 現在)
34p (30) 駐日外国公館への対応(外務省情報:1 月 15 日 08:00 現在)
34p (31) 海外からの具体的支援の申し出(外務省情報:1 月 15 日 08:00 現在)
34p (32) 在日外国人への対応(外務省情報:1 月 15 日 08:00 現在)
34p (33) 金融機関等(金融庁情報:1月 12 日 15 時時点)
35p (34) 廃棄物処理施設関係(環境省情報:1月 15 日 8:30 現在)
36p (35) 災害廃棄物等関係(環境省情報:1 月 15 日 8:30 現在)
36p (36) 国立公園関係(環境省情報:1 月 15 日 8:30 現在)
36p (37) 動物愛護管理関係(環境省情報:1月 15 日 8:30 現在)
37p (38) 野生施設関係(環境省情報:1月 15 日 8:30 時点)
37p (39) 官庁施設(国土交通省情報:1 月 15 日 8:30 時点)
37p (40) 緊急物資輸送(国土交通省情報:1 月 15 日 5:30 時点)
38p (41) 火葬場の被害状況(厚生労働省情報:1 月 15 日 7:00 現在)
39p (42) 人材開発関係(厚生労働省情報:1 月 15 日 07:00 現在)
39p (43) 災害ボランティア関係(厚生労働省情報:1 月 15 日 07:00 現在)

40p 5 政府の主な対応

41p 6 各省庁の主な対応
41p (1) 内閣府
41p (2) 気象庁
42p (3) 警察庁(4p)
46p (4) 消防庁(9p)
55p (5) 海上保安庁・・・地震無視されていた
58p (6) 防衛省(14p)
72p (7) 総務省(4p)
76p (8) 法務省
76p (9) 外務省・・・各国からのお見舞いリスト
76p (10) 財務省・・・地震無視されていた
80p (12) 厚生労働省(19p)
99p (13) 農林水産省(8p)
107p (14) 経済産業省
107p (15) 国土交通省
110p (16) 環境省(4p)
114p (17) 金融庁
115p (18) 国土地理院
115p (19) 国土技術政策総合研究所・土木研究所・建築研究所・港湾空港技術研究所
116p (20) 消費者庁
117p (21) 原子力規制庁・・・地震無視されていた
119p (22) こども家庭庁・・・地震無視されていた

122p 7 都道府県における災害対策本部の設置状況
ほとんどの省庁は,能登半島地震の特設ページで情報発信していた。上記リスト中の例外は,海上保安庁,財務省,原子力規制庁,こども家庭庁。財務省はともかくその他の3庁は,この震災においても重要なはずなのでなんとかならんの?

石川県,珠洲市,輪島市,七尾市などのホームページは震災対応の簡易版になっている。

[1]石川県珠洲市輪島市七尾市羽咋市能登町中能登町穴水町志賀町)[2]指定公共機関:日本郵便,日本銀行,日本赤十字社日本放送協会中日本高速道路西日本旅客鉄道日本貨物鉄道,西日本電信電話,KDDI日本通運北陸電力北陸電力送配電NTTドコモエヌ・ティ・ティコミュニケーションズソフトバンク楽天モバイル福山通運佐川急便ヤマト運輸イオン,ユニー,セブン-イレブン・ジャパンローソンファミリーマートセブン&アイ・ホールディングス


2024年1月15日月曜日

福祉避難所

能登半島地震(2)からの続き

避難所の名称をめぐって,若干の混乱が続いている。菅野完のYouTubeでは,正確な行政手順に欠けた石川県馳知事の問題を指摘していた。

そのあたりのことは防災新聞が詳しかったので,Bardに要約させて整えた。
一次避難所は、災害発生直後に開設される避難所であり、警戒レベル3・高齢者等避難で開設される。学校の体育館や公民館等が一次避難所で、高齢者や障がい者の方も避難する。
二次避難所は、一次避難所での生活が困難な高齢者や障がい者のために開設される避難所であり、福祉施設等が指定されていた(福祉避難所ともよばれる)。
従来は、一次避難所から二次避難所へ移動する必要があったが、改正災害対策基本法により、一次避難所に避難することなく、直接二次避難所へ避難できるようになった。
ということである。石川県の地域防災計画(地震災害編)にも次のようにある。
二次避難支援体制の整備
高齢者や障害者等は避難所内の一般避難スペースでは健康の維持・確保が困難な要素が多い ことから、市町は、地区ごとの福祉避難所の指定など受入・支援体制の整備を図る。
また、避難者の生活改善や相談対応、福祉避難所への誘導など、福祉サービス面での支援を 行う県の災害派遣福祉チーム(DWAT)の受け入れや関係団体との連携により、要配慮者の 避難所内の一 般避難スペースからから福祉避難所への避難、または、社会福祉施設への緊急 入所、もしくは、医療機関への緊急入院を円滑に行う体制の確保に努める。
しかるに,今回の能登半島地震においては,二次避難や二次避難所という用語が,一般の避難者に対しても広く適応されており(馳知事だけでなく岸田首相やマスコミを含めて),それが混乱を助長しているのではないかというのが菅野完の指摘だった。まあ,1.5次避難所とか言い出したところでややこしくなっている。

輪島市は,実は,福祉避難所の最先端をいっていた。以下は2017年の8月17日の記事だ。

「福祉避難所」は、能登半島地震発生時において輪島市で、我が国で初めて設置・運営されました。
その必要性から、輪島市では、高齢者福祉施設を中心として市内外の多くの事業所と「福祉避難所設置・運営協定」を締結したほか、「福祉避難所設置・運営マニュアル」を作成し、その普及と災害時における円滑な設置を目指した「防災訓練」を実施しています。

[3]石川県地域防災計画(令和5年修正)
[5]防災新聞(二次避難所とは?一次避難所との違いは?今後は福祉避難所に統一される)

2024年1月14日日曜日

億万長者とSF

昨年,Tech Billionaires Need to Stop Trying to Make the Science Fiction They Grew Up on Real という記事を見つけた。

著者は英国のSF作家のチャールズ・ストロス(1964-)だ。量子論を用いたハードスペースオペラが作風らしい。シンギュラリティ・スカイ,アイアン・サンライズ,コンクリート・ジャングル,アッチェレランドなど早川書房から翻訳が出ているがどれも未読である。Amazonの書評だとかなり癖がありそうな様子だ。

さて,問題の記事の方だ。ビリオネアとはイーロン・マスク(1971-, Tesla, Space X),ジェフ・ベゾス(1964-, Amazon),ピーター・ティール(1967-, PayPal),マーク・ザッカーバーグ(1984-, Meta),マーク・アンドリーセン(1971-, Netscape)らを指している。

これらのハイテク企業の創業者や投資家たちは,火星の植民地化,スペース・コロニー,人工知能,延命,メタバースなどを実現すべく彼らの膨大なリソースを投じようとしている。これは,彼らが30-50年前に読んだ古き時代のSFの影響を受けているためだという主張だ。

その主張を適確に表現しているのが,マーク・アンドリーセンの「The Techno-Optimist Manifesto」だ。それはClaudeに読ませて要約させた。

このマニフェストは、技術とその可能性を受け入れ、人類の問題を解決し、人々の生活を改善することを熱烈に主張しています。
主なポイントは以下の通りです。
・技術は数百年にわたり進歩を推進し、社会を向上させてきた。最近のテックへの反発後、イノベーションを再び称えるべきだ。
・市場と資本主義は、技術の利点を広めることを可能にする。AI、バイオテクノロジー、量子コンピューティングなどは更なるブレークスルーを起こすだろう。
・気候変動、疾病、貧困などの課題には、技術的解決策が存在する。イノベーションを通じてこれらを克服できることに楽観的であるべきだ。
・企業と政府は、R&Dへの投資を促進し、起業家精神を奨励するべきだ。これにより、ソリューションの加速が図れる。
・利益と社会福祉の間に矛盾はない。資本主義的生産は社会プログラムの費用を支払う富を生む。
・知的対抗勢力は、実際には技術が人生を改善しているにも関わらず、技術の脅威を広めている。彼らのアイデアに反論し、イノベーションの積極的な側面を訴えるべきだ。
・全体として、問題を解決し、人間の可能性を最大限に引き出すために、技術の進歩に対する楽観的なビジョンを受け入れることを主張している。

規制のない資本主義だけによる,純粋で技術的カオスの未来を求める奇妙な加速主義哲学の推進をよびかけている。危ない危ない。

もともとSFは体制側の思想と親和性が高い部分を持ってきた。ジョン・W・キャンベル(1910-1971)やロバート・A・ハインライン(1907-1988)は右派として良く知られていたし,日本でも石原藤夫(1933-)や豊田有恒(1938-2023)はかなり右寄りだった。もちろん,ジェイムズ・G・バラード(1930-2009)や小松左京(1931-2011)は戦中の荒波を被って大きな影響を受けているし,既存の制度や社会システムへの斜め45度からの批評の視点を提供してきたのも確かだ。それでも,バブルの80年代以降は,メディアの主流として体制的な冷笑主義の温床となっていたと思えてしまう。

ストロスは次のようにいう。
・ジョン・キャンベルらSF界の右派は、人種差別、性差別、反共主義などの思想を推進した。アイン・ランド(1905-1982)の客観主義も資本主義と親和性が高い。
・ロシアの宇宙主義は、スペース移住、不死、スーパーヒューマン、シンギュラリティなど、TESCREALの思想に大きな影響を与えた。
・宇宙主義は、惑星移住や銀河系植民地化などの宿命論的目標を提示し、企業家に自己利益の追求を正当化している。
・SF作家はエンターテインメント作品を提供する者であり、正確な未来予測は偶発的なものにすぎない。作品は以前の作品からの偏見の影響を大きく受ける。
・SFは科学的方法に従って発展していない。商業的人気を追求する中で、過去の作品の思想(エリート主義、人種差別、優生思想など)を無自覚に受け継いできた。
もちろんそうでない素晴らしい作品が沢山あることも事実だが,SFが,宗教のような現実逃避成分を含んでいることも確かだ。


2024年1月13日土曜日

類楕円

真鍋さんのホームページ(MIPO)では神社の算額がよく取り上げらていれる。最近は,ChatGPTでPython プログラミングという新たな進化のステージの突入している。算額で登場する類楕円という4次曲線のグラフを描かせるプログラムを作るという問題がでてきた。

「類楕円」というのは初耳だった。調べてもあまり情報が見つからないのだが,トーラスを軸対称軸に平行な平面で切断してときに出来る4次曲線のようだ。トーラスの大円の半径を$d$,小円の半径を $b$とする。トーラスの中心を原点Oとして,軸対称の軸方向を$y$軸として,大円を含む平面を$x-z$平面とする。切断面の方程式は,$\underline{ z=d}$となる。
なお,下図より$(d+b)^2=a^2+d^2$,したがって$a^2=b^2+2db$である。


図:類楕円の定義

トーラス表面上の点をP:$\bm{r} = (x,y,z)$とする,これは大円上の点を表すベクトル$\bm{d}=(d\cos\varphi, 0, d\sin\varphi)$と,大円上の点からトーラス面上の点への相対ベクトル$\bm{s}=(b \sin \theta \sin \varphi, b \cos\theta, b \sin \theta \cos \varphi)$の和,$\bm{r}=\bm{d}+\bm{s}$になる。すなわち,
$ \bm{r} = (x,y,z) = ( (d+b \sin \theta) \sin \varphi,  b\cos\theta,  (d + b \sin \theta) \cos \varphi) $である。

これらから,$b \sin \theta = \sqrt{b^2-y^2}$,$(d +  \sqrt{b^2-y^2})^2 = x^2 + d^2$となる。
つまり,$b^2-y^2 + 2d \sqrt{b^2-y^2} = x^2$,$4d^2\ (b^2-y^2) = (x^2+y^2-b^2)^2$,

$\therefore (a^2-b^2)(b^2-y^2) = b^2 (x^2+y^2-b^2)^2$ が類楕円の4次式である。



2024年1月12日金曜日

伽蘿先代萩

 国立文楽劇場初春文楽公演(第173回)は,第1部が七福神宝の入舩と近頃河原の達引,第2部が伽羅先代萩,第3部が平家女護島と伊達娘恋緋鹿子で,第2部を観劇した。

今年から新年の鏡割りが再開されていたようだ。行ったのは晴の平日でそこまで冷え込んではいなかったが,第2部の観客の入りは4割弱というところか。外国人の姿が目に付いたが,お客さんの多くは日本人の女性高齢者である。

前回良かった芳穂太夫と錦糸の竹の間の段から始まる。悪役八汐が登場してからの場面で寝てしまったので,話の重要なポイントがわからなくなった。御殿の段は千歳太夫と富助だ。千歳大夫は昔のパターンに戻ったようで,どうも政岡の表現には合わないなあとつらつら考えているうちに再び眠りに落ちてしまった。

そうです,この茶道具による飯炊き(ままたき)の場面が第2部のクライマックスなのだけれど,それを見逃してしまった。昔,住太夫のままたきを見たときもかなり気合いを入れていたが,やはり途中から眠くなってしまったのだった。

調べてみると,住太夫の御殿の段は2010年の初春公演だった。奥の政岡忠義の段は津駒太夫。文楽を見始めてまだ間もない頃である。そんなこともあってかなり集中してみていたが,最後のなぎなたを持って見得を切る場面がすごく印象的だった。今回は視角がちがうので,ちょっと記憶とは合わない。

政岡忠義の段は呂勢太夫と清治で,いつもはここで寝ている。今回は千松が八汐に殺され,政岡が嘆き,八汐へ復讐を果たすという緊迫の場面の連続であり,呂勢太夫も気合いが入っていてたいへんよかった。

今回,最後の床下の段が追加されている。三味線の団吾休演の代役だった燕二郎がよかった。簑紫郎と玉勢が交替で,松ヶ枝節之助と貝田勘解由を演じている。そもそも大鼠は着ぐるみで演じられているとか,途中で鳴り物も太夫も三味線もない無音の時間が長く続くとか,せり上がる貝田勘解由には足がなく人形遣いも下駄を履いていないようだとか,なんだかよくわからないことが多い段なのであった。



図:国立文楽劇場2024初春公演(2024.1.11撮影)