「大晦日定めなき世の定かな」 (西鶴 1642-1693)
芥川龍之介が「蜘蛛の糸」を発表して百年。高二の秋の文化祭,クラスの仮装行列のテーマが 蜘蛛の糸だった。お釈迦様の極楽タワーの竹を近所から切り出し,地獄の焔と煙の絵を描いた。犍陀多に続いて蜘蛛の糸(登山部の赤いザイル)に群がる地獄の亡者だったころ。
2019年12月31日火曜日
2019年12月30日月曜日
2019年12月29日日曜日
鳥の地磁気コンパス
渡り鳥は正しい方角を知って長距離を渡ることができる。この鳥の能力には,地磁気を感知する感覚器が関与しているのではないかと考えられてきた。しかし,その具体的なメカニズムは不明だった。NHKのコズミックフロントをみていたら,量子力学の特集で,この話題について触れられていた。
2009年のGaugerらの論文によれば,ヨーロッパコマドリの渡りのメカニズムが調べられ,鳥の視覚における光のスペクトルが方向検知の能力と関係していることがわかった。そこで,単純な生体磁石も持つ感覚器のモデルではなくて,化学反応速度に対する磁場の影響のモデルが考えられた。鳥の目の光子吸収におけるラジカル対の生成で生ずる一重項と三重項からの生成物質が磁場の向きに依存して異なるため,地球磁場が化学信号をもたらすというものらしいが,肝腎の生成物質とその効果は特定されていないようだ。
光合成やその他の生態系における量子過程についてもまだまだおもしろい問題がたくさんありそうで,エンタングルメントがどう関るのか,興味津々というところ。
[1]Sustained quantum coherence and entanglement in the avian compass(Gauger et al. 2009)
[2]Quantum effects in biology: Bird navigation(Ritz 2011)
[3]Quantum Dynamics of the Avian Compass(Walters 2012)
[4]The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement(Zhang et al. 2015)
[5]The quantum needle of the avian magnetic compass(Hiscock et al. 2016)
[6]Quantum Mechanical Navigation: The Avian Compass(Herbert 2016)
2009年のGaugerらの論文によれば,ヨーロッパコマドリの渡りのメカニズムが調べられ,鳥の視覚における光のスペクトルが方向検知の能力と関係していることがわかった。そこで,単純な生体磁石も持つ感覚器のモデルではなくて,化学反応速度に対する磁場の影響のモデルが考えられた。鳥の目の光子吸収におけるラジカル対の生成で生ずる一重項と三重項からの生成物質が磁場の向きに依存して異なるため,地球磁場が化学信号をもたらすというものらしいが,肝腎の生成物質とその効果は特定されていないようだ。
光合成やその他の生態系における量子過程についてもまだまだおもしろい問題がたくさんありそうで,エンタングルメントがどう関るのか,興味津々というところ。
[1]Sustained quantum coherence and entanglement in the avian compass(Gauger et al. 2009)
[2]Quantum effects in biology: Bird navigation(Ritz 2011)
[3]Quantum Dynamics of the Avian Compass(Walters 2012)
[4]The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement(Zhang et al. 2015)
[5]The quantum needle of the avian magnetic compass(Hiscock et al. 2016)
[6]Quantum Mechanical Navigation: The Avian Compass(Herbert 2016)
2019年12月28日土曜日
ベテルギウス
冬の代表的な星座であるオリオン座のα星が,左上にある赤いベテルギウス(Betelgeuse,640±150光年)だ。星座のα星,β星,γ星は一般には明るさの順に名付けられている。ただ,諸般の事情で例外もあって,オリオン座で最も明るいのは右下の青白いリゲル(Rigel,860±80光年)らしい。いずれも1等星だが,全天には1等星(視等級が1.5等級より明るいもの)が21個しかないので,たいへん貴重な存在だ。
ところが,そのベテルギウスが最近2等星にランクダウンしそうとの話が伝わってきた。ベテルギウスは太陽質量の12倍(Wikipedia:en)の赤色超巨星である。約6.4年周期の変光星で明るさは0.0−1.3等級の範囲で変化するようだが,最近は1.5等級前後で低迷している。また明るくなればよいが,そうでないと楽しいことが起こるらしい。
太陽の20倍くらいの星の恒星内元素合成反応では,水素→ヘリウムの元素変換が終わりヘリウム→炭素になるあたりで赤色巨星になる。炭素→ネオンが1000年かかるが,ネオン→シリコンが1年,シリコン→鉄が2日で終了して超新星爆発する。このときネオン→シリコン反応で急激に収縮して暗くなるというので,もし現在の減光がネオン→シリコンであれば1年続いて我々が生きている間に超新星が見られるということになる,という説がtwitterで流布していた。本当かな?元素合成のシークェンスはおおむねあっているようだ。
オリオン座といえば,昔,忘年会の帰りに,オリオン座が冬空に映えるなあとおもいながら自転車をふらつかせていたら,頭から田んぼにつっこんだことを思い出す。まだ若かったので怪我もなく無事に帰宅できた。
(注)この現象は数年から10年に一度くらいの割合で発生しているようなので,心配する必要はないというか,残念であったというか・・・
[1]Stellar Evolution (Zucker,2010)
[2]CESAR Booklet ver. 2 (CESAR,2018)
[3]Plot a light curve(AAVSO米国変光星観測家協会)
[4]オリオン座のベテルギウスに異変,超新星爆発の前兆か(CNN.co.jp 2019)
[5]ベテルギウスの最期:超新星の徴候とその威力(ActiveGalactic 2010)
ところが,そのベテルギウスが最近2等星にランクダウンしそうとの話が伝わってきた。ベテルギウスは太陽質量の12倍(Wikipedia:en)の赤色超巨星である。約6.4年周期の変光星で明るさは0.0−1.3等級の範囲で変化するようだが,最近は1.5等級前後で低迷している。また明るくなればよいが,そうでないと楽しいことが起こるらしい。
太陽の20倍くらいの星の恒星内元素合成反応では,水素→ヘリウムの元素変換が終わりヘリウム→炭素になるあたりで赤色巨星になる。炭素→ネオンが1000年かかるが,ネオン→シリコンが1年,シリコン→鉄が2日で終了して超新星爆発する。このときネオン→シリコン反応で急激に収縮して暗くなるというので,もし現在の減光がネオン→シリコンであれば1年続いて我々が生きている間に超新星が見られるということになる,という説がtwitterで流布していた。本当かな?元素合成のシークェンスはおおむねあっているようだ。
オリオン座といえば,昔,忘年会の帰りに,オリオン座が冬空に映えるなあとおもいながら自転車をふらつかせていたら,頭から田んぼにつっこんだことを思い出す。まだ若かったので怪我もなく無事に帰宅できた。
(注)この現象は数年から10年に一度くらいの割合で発生しているようなので,心配する必要はないというか,残念であったというか・・・
[1]Stellar Evolution (Zucker,2010)
[2]CESAR Booklet ver. 2 (CESAR,2018)
[3]Plot a light curve(AAVSO米国変光星観測家協会)
[4]オリオン座のベテルギウスに異変,超新星爆発の前兆か(CNN.co.jp 2019)
[5]ベテルギウスの最期:超新星の徴候とその威力(ActiveGalactic 2010)
図 ベテルギウスの光度曲線(AAVSOより引用)
2019年12月27日金曜日
数値計算のリスク
精度保証付き数値計算についてのQiitaのAdvent Calendarの記事が話題になっていた。数値計算はなかなか奥が深いので困る。
[Rumpの例題]
$f(a,b) = 333.75 b^6 + a^2 (11 a^2 b^2 − b^6−121 b^4−2) + 5.5 b^8 +\dfrac{a}{2b}$
に $(a,b)=(77617.0, 33096.0)$ を代入した値は?
Mathematicaの場合
In[1]:= f[a_, b_] := 333.75 b^6 + a^2 (11 a^2 b^2 - b^6 - 121 b^4 - 2) + 5.5 b^8 + a/(2 b)
In[2]:= f[77617.0, 33096.0]
Out[2]= -1.18059*10^21
In[3]:= g[a_, b_] := 1335/4 b^6 + a^2 (11 a^2 b^2 - b^6 - 121 b^4 - 2) + 11/2 b^8 + a/(2 b)
In[4]:= N[g[77617, 33096], 20]
Out[4]= -0.82739605994682136814
Juliaの場合
[1] function g(a::BigInt,b::BigInt)
x = 1335/4*b^6 + a^2*(11*a^2*b^2 - b^6 - 121*b^4 - 2) + 11/2*b^8 + a/(2*b)
end
[2] g(BigInt(77617), BigInt(33096))
[2] -0.8273960599468213681411650954798162919990331157843848199178148416727096930142628
[3] function g128(a::Int128,b::Int128)
x = 1335/4*b^6 + a^2*(11*a^2*b^2 - b^6 - 121*b^4 - 2) + 11/2*b^8 + a/(2*b)
end
[4] g128(Int128(77617), Int128(33096))
[4] 1.1805916207174113e21
[5] function f(a::BigFloat,b::BigFloat)
x = 1335/4*b^6 + a^2*(11*a^2*b^2 - b^6 - 121*b^4 - 2) + 11/2*b^8 + a/(2*b)
end
[6] f(BigFloat(77617), BigFloat(33096))
[6] -0.8273960599468213681411650954798162919990331157843848199178148416727096930142628
[7] function f64(a::Float64,b::Float64)
x = 1335/4*b^6 + a^2*(11*a^2*b^2 - b^6 - 121*b^4 - 2) + 11/2*b^8 + a/(2*b)
end
[8] f(Float64(77617), Float64(33096))
[8] -1.1805916207174113e21
[Rumpの例題]
$f(a,b) = 333.75 b^6 + a^2 (11 a^2 b^2 − b^6−121 b^4−2) + 5.5 b^8 +\dfrac{a}{2b}$
に $(a,b)=(77617.0, 33096.0)$ を代入した値は?
Mathematicaの場合
In[1]:= f[a_, b_] := 333.75 b^6 + a^2 (11 a^2 b^2 - b^6 - 121 b^4 - 2) + 5.5 b^8 + a/(2 b)
In[2]:= f[77617.0, 33096.0]
Out[2]= -1.18059*10^21
In[3]:= g[a_, b_] := 1335/4 b^6 + a^2 (11 a^2 b^2 - b^6 - 121 b^4 - 2) + 11/2 b^8 + a/(2 b)
In[4]:= N[g[77617, 33096], 20]
Out[4]= -0.82739605994682136814
Juliaの場合
[1] function g(a::BigInt,b::BigInt)
x = 1335/4*b^6 + a^2*(11*a^2*b^2 - b^6 - 121*b^4 - 2) + 11/2*b^8 + a/(2*b)
end
[2] g(BigInt(77617), BigInt(33096))
[2] -0.8273960599468213681411650954798162919990331157843848199178148416727096930142628
[3] function g128(a::Int128,b::Int128)
x = 1335/4*b^6 + a^2*(11*a^2*b^2 - b^6 - 121*b^4 - 2) + 11/2*b^8 + a/(2*b)
end
[4] g128(Int128(77617), Int128(33096))
[4] 1.1805916207174113e21
[5] function f(a::BigFloat,b::BigFloat)
x = 1335/4*b^6 + a^2*(11*a^2*b^2 - b^6 - 121*b^4 - 2) + 11/2*b^8 + a/(2*b)
end
[6] f(BigFloat(77617), BigFloat(33096))
[6] -0.8273960599468213681411650954798162919990331157843848199178148416727096930142628
[7] function f64(a::Float64,b::Float64)
x = 1335/4*b^6 + a^2*(11*a^2*b^2 - b^6 - 121*b^4 - 2) + 11/2*b^8 + a/(2*b)
end
[8] f(Float64(77617), Float64(33096))
[8] -1.1805916207174113e21
2019年12月26日木曜日
ならの大仏さま:かこさとし
かこさとしの絵本にはとてもお世話になった。子どもたちが小さいとき,1960年代から1980年代にかけて出版されたかこさとしの絵本のいくつかは寝る前の読み聞かせの定番だった。「だるまちゃんとてんぐちゃん 」「だるまちゃんとかみなりちゃん」「どろぼうがっこう」「からすのパンやさん」「だるまちゃんとうさぎちゃん」「だるまちゃんととらのこちゃん」などで,親子共々たいへんたのしく読むことができた。
福井県生まれ,東大工学部応用化学科出身で工学博士号を持つ加古里子には,「かわ」「海」「地球」「人間」「宇宙」などのすぐれた科学絵本もあった。しかし,これらについては図書館で借りるか本屋で立ち読みしたくらいで,買うことはなかった(なぜだろう)。ただ,「ならの大仏さま」だけは,1990年ごろに奈良県に引っ越した後に買ったのでいまも手元にある。
久しぶりに奥から引っ張り出してきて読んでみると,これはなかなかの名著であった。小学校高学年のときに読んだ日本の歴史シリーズの最初の巻で奈良の大仏の建立にいたる具体的な物語が書かれていてとてもおもしろく読んだ記憶があったが,それを思い出させるものであった。金の水銀アマルガムからくる毒性の話ものっていたのではないかと思う。非常に具体的であり,科学者の目がすみずみまでとどいているのだ。板倉聖宣のセンスと同じものがある。
福井県生まれ,東大工学部応用化学科出身で工学博士号を持つ加古里子には,「かわ」「海」「地球」「人間」「宇宙」などのすぐれた科学絵本もあった。しかし,これらについては図書館で借りるか本屋で立ち読みしたくらいで,買うことはなかった(なぜだろう)。ただ,「ならの大仏さま」だけは,1990年ごろに奈良県に引っ越した後に買ったのでいまも手元にある。
久しぶりに奥から引っ張り出してきて読んでみると,これはなかなかの名著であった。小学校高学年のときに読んだ日本の歴史シリーズの最初の巻で奈良の大仏の建立にいたる具体的な物語が書かれていてとてもおもしろく読んだ記憶があったが,それを思い出させるものであった。金の水銀アマルガムからくる毒性の話ものっていたのではないかと思う。非常に具体的であり,科学者の目がすみずみまでとどいているのだ。板倉聖宣のセンスと同じものがある。
2019年12月25日水曜日
浮力の問題(7)
浮力の問題(6)に続いて,もうひとつ別のモデルを考えてみる。
板倉さんや夏目さんの実験などでは乾いた容器に密度が水より小さな物体を押し付けた状態でまわりに流体をそそぎ,その後,手を離しても浮上しない状態が維持される。これに松川さんが噛みついた訳だった。単純な表面張力で説明できるかというと,浮力の問題(4)で示したように効果が小さすぎるように思える。そこで薄い空気層があるために浮上を妨げるということがありうるか考えてみる。
場面設定
場面設定1の環境において,質量$m$,底面積$A$,高さ$d$の直方体Cを用意する。$H$は大気圧$P_{\rm A}$と等価な水柱の高さである。水を入れない状態の水底Bに物体Cを押さえつけ,ここから水を$h$まで満たすと物体の底面と水底Bの間に厚さ$b$の空気層が残ったとする。
初期状態では空気層の厚さは$b=b_i \ll d$であり,その面積は物体の底面積$A$と一致している。このときの張力は$T_i=0$である。空気層の気圧の初期値$P_i$は水底の水圧$P_{\rm B}$と等しいとする。
次に張力$T$で物体を持ち上げると空気層の部分に徐々に水が浸入すると同時に空気層の
厚みは増加し,$T=T_f$で最終的に離床するときの厚さは$b=b_0 \ll d$となったとする。
①:薄い空気層が存在するモデル
水の浸入する割合 $f(P)$ が,水中の空気層の圧力$P$に比例するというモデルを考える。初期状態では,$f(P_i)=f_i=0$であり水は浸入しない。圧力が減るとともに浸入の割合は線型に増加し,離床時は $f(P_f)=f_0$となるとして,次式を仮定する。
\begin{equation}
f(P) = \dfrac{P-P_i}{P_f-P_i}f_0
\end{equation}
空気層の厚さは物体の高さにくらべて十分に小さいと近似する。すなわち物体が空気層をはさんで着底してから張力$T$を加えて持ち上げる過程で,物体の上面の水圧$P_C$や物体の下面の水圧$P_B$はそれぞれ,有効水深$H+h-d$や$H+h$の水圧のままであるとする。このとき水圧の式は次のようになる。
\begin{equation}
\begin{aligned}
P_{\rm A} &= \rho g H\\
P_{\rm C} &= \rho g (H+h-d)\\
P_{\rm B} &= \rho g (H+d)\\
P_i &= P_C + m g /A\\
P_f &= \dfrac{b_i}{b_0 (1-f_0)}\ P_i = \beta / \bar{f} \cdot P_i
\end{aligned}
\end{equation}
ただし,$b_i/b_0=\beta,\ \bar{f}=1-f_0$とした。
初期状態では次の力の釣り合いの式が成り立っている。
\begin{equation}
T_i = m g + P_{\rm C} A - P_i A = 0
\end{equation}
離床状態では次の力の釣り合いの式が成り立っている。
\begin{equation}
\begin{aligned}
T_f &= m g + P_{\rm C} A - P_B A f_0 - P_f A (1-f_0)\\
&= m g + \rho g (H+h-d) A - \rho g (H+h) A f_0 \\
&- \Bigl\{ m g + \rho g (H+h-d) A \Bigr\}\beta
\end{aligned}
\end{equation}
両辺を$\rho g d A = m_0 g$で割り,$t_f = T_f/ m_0 g$と置くと,
\begin{equation}
\begin{aligned}
t_f &= \dfrac{\rho_m}{\rho} -1 + \dfrac{H+h}{d}\bar{f}
-\Bigl( \dfrac{\rho_m}{\rho} -1 + \dfrac{H+h}{d} \Bigr) \beta \\
&= \Bigl(\dfrac{\rho_m}{\rho} -1 \Bigr) (1-\beta)+
\dfrac{H+h}{d}(\bar{f} - \beta)
\end{aligned}
\end{equation}
②:数値的な評価の例
物体Cを密度$\rho_m = 0.5$で一辺が10cm の立方体とする。立方体の質量は 500 g である。
大気圧に等価な水の深さは$H$=1000cmであり,水深を$d$=100cmとする。$m_0 g$ = 1 kgwなので,次の式の単位はkgwである。離床時張力$t_f$は,空気層の体積拡大率の逆数$\beta$と浸水していない部分の比率$\bar{f}$の関数$t_f(\bar{f},\beta)$として表される。
ただし,$0 < \bar{f},\ \beta < 1$ である。
(1) $f_0=0\ (\bar{f}=1)$,離床時の浸水がない場合
\begin{equation}
\begin{aligned}
t_f(1, \beta) = -0.5 ( 1 - \beta) + 110 (1-\beta)\\
0 < \beta < 1 \quad \to \quad 109.5 > t_f > 0
\end{aligned}
\end{equation}
(2) $f_0=0.5\ (\bar{f}=0.5)$,離床時に50%は浸水している場合
\begin{equation}
\begin{aligned}
t_f(0.5, \beta) = -0.5 ( 1 - \beta) + 110 (0.5-\beta)\\
0 < \beta < 0.4977 \quad \to \quad 54.5 > t_f > 0
\end{aligned}
\end{equation}
(3) $f_0=0.9\ (\bar{f}=0.1)$,離床時に90%は浸水している場合
\begin{equation}
\begin{aligned}
t_f(0.1, \beta) = -0.5 ( 1 - \beta) + 110 (0.1-\beta)\\
0 < \beta < 0.0959 \quad \to \quad 10.5 > t_f > 0
\end{aligned}
\end{equation}
板倉さんや夏目さんの実験などでは乾いた容器に密度が水より小さな物体を押し付けた状態でまわりに流体をそそぎ,その後,手を離しても浮上しない状態が維持される。これに松川さんが噛みついた訳だった。単純な表面張力で説明できるかというと,浮力の問題(4)で示したように効果が小さすぎるように思える。そこで薄い空気層があるために浮上を妨げるということがありうるか考えてみる。
場面設定
場面設定1の環境において,質量$m$,底面積$A$,高さ$d$の直方体Cを用意する。$H$は大気圧$P_{\rm A}$と等価な水柱の高さである。水を入れない状態の水底Bに物体Cを押さえつけ,ここから水を$h$まで満たすと物体の底面と水底Bの間に厚さ$b$の空気層が残ったとする。
初期状態では空気層の厚さは$b=b_i \ll d$であり,その面積は物体の底面積$A$と一致している。このときの張力は$T_i=0$である。空気層の気圧の初期値$P_i$は水底の水圧$P_{\rm B}$と等しいとする。
次に張力$T$で物体を持ち上げると空気層の部分に徐々に水が浸入すると同時に空気層の
厚みは増加し,$T=T_f$で最終的に離床するときの厚さは$b=b_0 \ll d$となったとする。
図 水中の物体に働く圧力と力(その2)
①:薄い空気層が存在するモデル
水の浸入する割合 $f(P)$ が,水中の空気層の圧力$P$に比例するというモデルを考える。初期状態では,$f(P_i)=f_i=0$であり水は浸入しない。圧力が減るとともに浸入の割合は線型に増加し,離床時は $f(P_f)=f_0$となるとして,次式を仮定する。
\begin{equation}
f(P) = \dfrac{P-P_i}{P_f-P_i}f_0
\end{equation}
空気層の厚さは物体の高さにくらべて十分に小さいと近似する。すなわち物体が空気層をはさんで着底してから張力$T$を加えて持ち上げる過程で,物体の上面の水圧$P_C$や物体の下面の水圧$P_B$はそれぞれ,有効水深$H+h-d$や$H+h$の水圧のままであるとする。このとき水圧の式は次のようになる。
\begin{equation}
\begin{aligned}
P_{\rm A} &= \rho g H\\
P_{\rm C} &= \rho g (H+h-d)\\
P_{\rm B} &= \rho g (H+d)\\
P_i &= P_C + m g /A\\
P_f &= \dfrac{b_i}{b_0 (1-f_0)}\ P_i = \beta / \bar{f} \cdot P_i
\end{aligned}
\end{equation}
ただし,$b_i/b_0=\beta,\ \bar{f}=1-f_0$とした。
初期状態では次の力の釣り合いの式が成り立っている。
\begin{equation}
T_i = m g + P_{\rm C} A - P_i A = 0
\end{equation}
離床状態では次の力の釣り合いの式が成り立っている。
\begin{equation}
\begin{aligned}
T_f &= m g + P_{\rm C} A - P_B A f_0 - P_f A (1-f_0)\\
&= m g + \rho g (H+h-d) A - \rho g (H+h) A f_0 \\
&- \Bigl\{ m g + \rho g (H+h-d) A \Bigr\}\beta
\end{aligned}
\end{equation}
両辺を$\rho g d A = m_0 g$で割り,$t_f = T_f/ m_0 g$と置くと,
\begin{equation}
\begin{aligned}
t_f &= \dfrac{\rho_m}{\rho} -1 + \dfrac{H+h}{d}\bar{f}
-\Bigl( \dfrac{\rho_m}{\rho} -1 + \dfrac{H+h}{d} \Bigr) \beta \\
&= \Bigl(\dfrac{\rho_m}{\rho} -1 \Bigr) (1-\beta)+
\dfrac{H+h}{d}(\bar{f} - \beta)
\end{aligned}
\end{equation}
②:数値的な評価の例
物体Cを密度$\rho_m = 0.5$で一辺が10cm の立方体とする。立方体の質量は 500 g である。
大気圧に等価な水の深さは$H$=1000cmであり,水深を$d$=100cmとする。$m_0 g$ = 1 kgwなので,次の式の単位はkgwである。離床時張力$t_f$は,空気層の体積拡大率の逆数$\beta$と浸水していない部分の比率$\bar{f}$の関数$t_f(\bar{f},\beta)$として表される。
ただし,$0 < \bar{f},\ \beta < 1$ である。
(1) $f_0=0\ (\bar{f}=1)$,離床時の浸水がない場合
\begin{equation}
\begin{aligned}
t_f(1, \beta) = -0.5 ( 1 - \beta) + 110 (1-\beta)\\
0 < \beta < 1 \quad \to \quad 109.5 > t_f > 0
\end{aligned}
\end{equation}
(2) $f_0=0.5\ (\bar{f}=0.5)$,離床時に50%は浸水している場合
\begin{equation}
\begin{aligned}
t_f(0.5, \beta) = -0.5 ( 1 - \beta) + 110 (0.5-\beta)\\
0 < \beta < 0.4977 \quad \to \quad 54.5 > t_f > 0
\end{aligned}
\end{equation}
(3) $f_0=0.9\ (\bar{f}=0.1)$,離床時に90%は浸水している場合
\begin{equation}
\begin{aligned}
t_f(0.1, \beta) = -0.5 ( 1 - \beta) + 110 (0.1-\beta)\\
0 < \beta < 0.0959 \quad \to \quad 10.5 > t_f > 0
\end{aligned}
\end{equation}
2019年12月24日火曜日
浮力の問題(6)
浮力の問題(5)から少しだけ話を進めてみよう。
最も気になっているのが,いわゆる「浮力の消失」現象の実験の説明である。浮力の問題(3)で紹介した,浜名湖観光局のアルキメデスの原理:浮力の正体の一考察では,水底に着底した物体を吊り上げる際の張力を静止摩擦力とのアナロジーで議論していた。そこで,離床の際の張力を与えることができる簡単なモデルを作ってみた。
場面設定
一様重力場における重力加速度を$g$,水の密度を$\rho$とする。大気の密度を$\rho_0$,大気の有効高さを$H_{\rm eff}$として,大気底での空気の圧力は$p_0=\rho_0 g H_{\rm eff}$となる。さらに,これに等価な水柱の高さを$H$とすると,$p_0=\rho H$と表される。底面が水平で滑らかな十分広い容器に水底からの高さ$h$まで密度$\rho$の水を満たす。水表面をA,水底面をBとする。
質量$m$,底面積$A$,高さ$d$の直方体の物体Cを用意する。Cの密度を,$\rho_m= \frac{m}{A d}$と書くことにする。Cの底面は滑らかであるが,水中で水底面と密着させた場合,$f \cdot A$の面積の部分に水がしみ込んで,水底と同じだけの水圧が鉛直上方に働く。水がしみ込む面積の底面積に対する比率$f$は,$0 \le f \le 1$を満足している。なお物体が押しのけた水の重さは$m_0 g = \rho A d g$である。
この物体が水底に接地しているときには,図のような力が働いている。$p_A=p_0=\rho g H$は,水表面Aにおける大気圧,$p_C= \rho g H + \rho g (h-d)$は物体Cの上面における水圧(大気を含む),$p_B = \rho g H + \rho g h$は水底面Bにおける水圧を表している。
物体には,水圧からくる浮力以外に重力 $m g$ と,物体Cの上面には糸からくる張力$T$,物体の底面のうち水がしみ込まない$(1-f)A$の面積の部分に加わる底面からの抗力$R$,これ以外の粘着力や表面張力などの和$X$が働いている。なお,$T,R,X$を$m_0 g$を単位として測った無次元量を$t=T/m_0 g,\ r= R/m_0 g,\ x=X/m_0 g$と表すことにする。
①:Cの釣り合い
物体Cに働く力の釣り合いの式は次のようになる。
\begin{equation}
mg + P_C A - P_B f A +X -R -T = 0
\end{equation}
物体Cの上下面の圧力から来る力の和は,
\begin{equation}
\begin{aligned}
P_C A - P_B f A &= \rho g (H+h-d) A -\rho g (H+h) f A \\
&= \rho g d A \Bigl(\dfrac{H+h}{d} - 1 - \dfrac{H+h}{d} f \Bigr)\\
&= m_0 g \Bigl\{\dfrac{H+h}{d}(1-f) - 1 \Bigr\}
\end{aligned}
\end{equation}
両辺を $m_0 g$で割った力の釣り合いの式は,
\begin{equation}
\dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f) - 1 \Bigr\} +x -r -t = 0
\end{equation}
つまり,これは抗力$r$と張力$t$の和に対しての条件式と見なすことができる。
\begin{equation}
r + t = \dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f) - 1 \Bigr\} +x
\end{equation}
抗力が$r=0$となるときの張力$t_0$の値は次式で与えられる。
\begin{equation}
t_0 = \dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f) - 1 \Bigr\} +x
\end{equation}
さらに張力を加えて抗力が$r=0$のときに隙間がすべて流体で満たされるとする。このときには$f=1$となり,その張力を$t_1$とすると,
\begin{equation}
t_1 = \dfrac{\rho_m}{\rho} - 1 + x
\end{equation}
あるいは,完全に離床してしまえば付加的な力も働かないので,その場合の張力を$t_2$とすると,
\begin{equation}
t_2 = \dfrac{\rho_m}{\rho} - 1
\end{equation}
ただし,これらの式において張力が0または負になるときは,物体が浮き上がる条件が
満たされていることになる。
②:真の接触面積が抗力に比例するモデル
静止摩擦力と垂直抗力の関係において,最大静止摩擦力は物体と運動面の見かけの接触面積には比例せず,垂直抗力に比例していた。これは,物体と運動面の真の接触面積が垂直抗力に比例することを含意する。そこで,これを参考にして次のようなモデルを考える。
水が底面間の隙間にしみ込む面積の比率$f$が抗力$r$の1次関数$f(r)$であると仮定し,$t=0$の場合の初期状態の$r=r_0$で$f(r_0)=f_i$,離床条件である$r=0$の場合$t=t_0$で$f(0)=f_0$($0 \le f_i < f_0 \le 1$)となるように決めることにする。
すなわち,
\begin{equation}
\begin{aligned}
t_0 &= \dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f_0) - 1 \Bigr\} +x \\
r_0 &= \dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f_i) - 1 \Bigr\} +x
\end{aligned}
\end{equation}
そこで,①の$f$を$f(r)=f_0 + (f_i-f_0)\frac{r}{r_0}$で置き換えればよい。
\begin{equation}
\begin{aligned}
r + t &= \dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f(r)) - 1 \Bigr\} +x \\
r + t &= \dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f_0 -(f_i-f_0)\dfrac{r}{r_0})
- 1 \Bigr\} +x \\
t_0 &= \Bigl\{ r_0 + \dfrac{H+h}{d}(f_i-f_0) \Bigr\} \dfrac{r}{r_0} + t
\end{aligned}
\end{equation}
これを整理すると次のような式にまとめることができる。
\begin{equation}
t = t_0\Bigl(1-\dfrac{r}{r_0}\Bigr) \quad \quad r = r_0 \Bigl( 1 - \dfrac{t}{t_0}\Bigr)
\end{equation}
③:数値的な評価の例
物体Cを密度$\rho_m = 0.5$で一辺が10cm の立方体とする。立方体の質量は 500 g である。
大気圧に等価な水の深さは$H$=1000cmであり,水深を$d$=100cmとする。$m_0 g$ = 1 kgwなので,次の式の単位はkgwである。
\begin{equation}
t_0 = \dfrac{\rho_m}{\rho} +110\cdot(1-f_0) - 1 + x
= 110\cdot(1-f_0) -0.5 + x
\end{equation}
これが水がしみ込む面積が抗力に比例するモデルにおいて物体を持ち上げるのに必要な力
をkgw単位で表現した例である。$x$として立方体の底面の周囲に働く水の表面張力を当てはめてみると,$x = 73\ {\rm dyne/cm} \cdot 40\ {\rm cm} \cdot 10^2/10^5 \ {\rm gw/dyne}\ /\ 1\ {\rm kgw} = 2.9 \times 10^{-3}$程度の寄与しかない。
最も気になっているのが,いわゆる「浮力の消失」現象の実験の説明である。浮力の問題(3)で紹介した,浜名湖観光局のアルキメデスの原理:浮力の正体の一考察では,水底に着底した物体を吊り上げる際の張力を静止摩擦力とのアナロジーで議論していた。そこで,離床の際の張力を与えることができる簡単なモデルを作ってみた。
場面設定
一様重力場における重力加速度を$g$,水の密度を$\rho$とする。大気の密度を$\rho_0$,大気の有効高さを$H_{\rm eff}$として,大気底での空気の圧力は$p_0=\rho_0 g H_{\rm eff}$となる。さらに,これに等価な水柱の高さを$H$とすると,$p_0=\rho H$と表される。底面が水平で滑らかな十分広い容器に水底からの高さ$h$まで密度$\rho$の水を満たす。水表面をA,水底面をBとする。
質量$m$,底面積$A$,高さ$d$の直方体の物体Cを用意する。Cの密度を,$\rho_m= \frac{m}{A d}$と書くことにする。Cの底面は滑らかであるが,水中で水底面と密着させた場合,$f \cdot A$の面積の部分に水がしみ込んで,水底と同じだけの水圧が鉛直上方に働く。水がしみ込む面積の底面積に対する比率$f$は,$0 \le f \le 1$を満足している。なお物体が押しのけた水の重さは$m_0 g = \rho A d g$である。
この物体が水底に接地しているときには,図のような力が働いている。$p_A=p_0=\rho g H$は,水表面Aにおける大気圧,$p_C= \rho g H + \rho g (h-d)$は物体Cの上面における水圧(大気を含む),$p_B = \rho g H + \rho g h$は水底面Bにおける水圧を表している。
物体には,水圧からくる浮力以外に重力 $m g$ と,物体Cの上面には糸からくる張力$T$,物体の底面のうち水がしみ込まない$(1-f)A$の面積の部分に加わる底面からの抗力$R$,これ以外の粘着力や表面張力などの和$X$が働いている。なお,$T,R,X$を$m_0 g$を単位として測った無次元量を$t=T/m_0 g,\ r= R/m_0 g,\ x=X/m_0 g$と表すことにする。
図 水中の物体に働く圧力と力
物体Cに働く力の釣り合いの式は次のようになる。
\begin{equation}
mg + P_C A - P_B f A +X -R -T = 0
\end{equation}
物体Cの上下面の圧力から来る力の和は,
\begin{equation}
\begin{aligned}
P_C A - P_B f A &= \rho g (H+h-d) A -\rho g (H+h) f A \\
&= \rho g d A \Bigl(\dfrac{H+h}{d} - 1 - \dfrac{H+h}{d} f \Bigr)\\
&= m_0 g \Bigl\{\dfrac{H+h}{d}(1-f) - 1 \Bigr\}
\end{aligned}
\end{equation}
両辺を $m_0 g$で割った力の釣り合いの式は,
\begin{equation}
\dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f) - 1 \Bigr\} +x -r -t = 0
\end{equation}
つまり,これは抗力$r$と張力$t$の和に対しての条件式と見なすことができる。
\begin{equation}
r + t = \dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f) - 1 \Bigr\} +x
\end{equation}
抗力が$r=0$となるときの張力$t_0$の値は次式で与えられる。
\begin{equation}
t_0 = \dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f) - 1 \Bigr\} +x
\end{equation}
さらに張力を加えて抗力が$r=0$のときに隙間がすべて流体で満たされるとする。このときには$f=1$となり,その張力を$t_1$とすると,
\begin{equation}
t_1 = \dfrac{\rho_m}{\rho} - 1 + x
\end{equation}
あるいは,完全に離床してしまえば付加的な力も働かないので,その場合の張力を$t_2$とすると,
\begin{equation}
t_2 = \dfrac{\rho_m}{\rho} - 1
\end{equation}
ただし,これらの式において張力が0または負になるときは,物体が浮き上がる条件が
満たされていることになる。
②:真の接触面積が抗力に比例するモデル
静止摩擦力と垂直抗力の関係において,最大静止摩擦力は物体と運動面の見かけの接触面積には比例せず,垂直抗力に比例していた。これは,物体と運動面の真の接触面積が垂直抗力に比例することを含意する。そこで,これを参考にして次のようなモデルを考える。
水が底面間の隙間にしみ込む面積の比率$f$が抗力$r$の1次関数$f(r)$であると仮定し,$t=0$の場合の初期状態の$r=r_0$で$f(r_0)=f_i$,離床条件である$r=0$の場合$t=t_0$で$f(0)=f_0$($0 \le f_i < f_0 \le 1$)となるように決めることにする。
すなわち,
\begin{equation}
\begin{aligned}
t_0 &= \dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f_0) - 1 \Bigr\} +x \\
r_0 &= \dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f_i) - 1 \Bigr\} +x
\end{aligned}
\end{equation}
そこで,①の$f$を$f(r)=f_0 + (f_i-f_0)\frac{r}{r_0}$で置き換えればよい。
\begin{equation}
\begin{aligned}
r + t &= \dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f(r)) - 1 \Bigr\} +x \\
r + t &= \dfrac{\rho_m}{\rho} +\Bigl\{\dfrac{H+h}{d}(1-f_0 -(f_i-f_0)\dfrac{r}{r_0})
- 1 \Bigr\} +x \\
t_0 &= \Bigl\{ r_0 + \dfrac{H+h}{d}(f_i-f_0) \Bigr\} \dfrac{r}{r_0} + t
\end{aligned}
\end{equation}
これを整理すると次のような式にまとめることができる。
\begin{equation}
t = t_0\Bigl(1-\dfrac{r}{r_0}\Bigr) \quad \quad r = r_0 \Bigl( 1 - \dfrac{t}{t_0}\Bigr)
\end{equation}
③:数値的な評価の例
物体Cを密度$\rho_m = 0.5$で一辺が10cm の立方体とする。立方体の質量は 500 g である。
大気圧に等価な水の深さは$H$=1000cmであり,水深を$d$=100cmとする。$m_0 g$ = 1 kgwなので,次の式の単位はkgwである。
\begin{equation}
t_0 = \dfrac{\rho_m}{\rho} +110\cdot(1-f_0) - 1 + x
= 110\cdot(1-f_0) -0.5 + x
\end{equation}
これが水がしみ込む面積が抗力に比例するモデルにおいて物体を持ち上げるのに必要な力
をkgw単位で表現した例である。$x$として立方体の底面の周囲に働く水の表面張力を当てはめてみると,$x = 73\ {\rm dyne/cm} \cdot 40\ {\rm cm} \cdot 10^2/10^5 \ {\rm gw/dyne}\ /\ 1\ {\rm kgw} = 2.9 \times 10^{-3}$程度の寄与しかない。
2019年12月23日月曜日
浮力の問題(5)
浮力の問題(4)まで進んできたが,浮力についての現段階での自分の考えをまとめてみる。
(1) 浮力の定義
一様重力場中の流体Fと境界を接する物体に働く力を考える。物体の表面のうち流体と直に接する部分の面Sに作用する流体の圧力をSに渡って積分する。この積分によって得られた力を流体Fによって物体に作用する浮力とよぶ。
(浮力の向きが鉛直上方でない場合も含めて浮力とよぶことに注意)
(2) 水底に置いた物体の思考実験
底面が平な物体が流体の入れ物の水平な底面(水底面)におかれ,流体がしみ込まずに水底に真に接する部分があれば,浮力の向きが鉛直下方の場合がある。
(3) 「浮力の消失」の現象の実験
水底面に接地する物体の密度が流体より小さくても水底から浮かび上がらない現象を「浮力の消失」とよぶことがある。ただし,(1)の定義によれば浮力は消失していない。
(水銀中の分銅,水中のパラフィン底面の木片,水中の超撥水材底面の木片,底面の一部をくりぬき接地しない構造を持つ木片,の報告あり)
(4) 「浮力の消失」現象の説明
実際に観察される「浮力の消失」現象の主な原因には2つの立場がある。自分は(a)の場合もあるのではないかと考えているが明確な証拠がない。
(a) (2)の鉛直下向きの浮力が主に寄与する。
(b) 流体を排除する部分の面積は非常に小さくて(2)は無視でき,表面張力や物体底面と水底面の粘着力などが主に寄与する。
(流体の排除には完全な平面の密着が必要という考えは誤っている→超撥水材)
(表面張力説について定量的に議論している資料は見あたらない)
(5) 水中の物体の重さ
物体をのせない場合を目盛を0に合わせた水中の秤ではかることで定義する。このとき,水中の物体の重さは空気中の重さに比べて物体が排除した水の体積分だけ軽くなる。これは物体の底面積と,秤との隙間に流体がしみこまない真の接地面積との比によらない。
追伸(12/27/2019)
水中の物体の重さを測るのに,物体を吊るした糸の張力ではかるばね秤法と容器の水底に置いた秤ではかる水底秤法が考えられる。有限サイズの容器に底面積A,高さd,質量mの直方体を水中に入れて測定する。容器に物体をいれると水面の高さがδだけ高くなった。なお,水底秤は物体を入れる前に0に調整してあり,体積Adの水の質量をm_0とする。
それぞれの方法で測った水中の物体の重さをm'gとすると以下の結果が得られる。
水底秤法では m’g = (m-m_0)g + ρδA g
ばね秤法では m’g = (m-m_0)g
これを解釈するのに2つの立場がある。
(a) Graf はδ=0としているがこれはアルキメデスの原理に合わせるための恣意的な操作だ。
(b) δは容器のサイズに依存する境界効果であり本質的でない。
(Grafが十分広い容器を考えてδ=0としたのは自然な操作である)
((a)説の人々排除した水にこだわるのがよくわからない。下図ではだめなのかしら。)
追伸(12/27/2019)
水中の物体の重さを測るのに,物体を吊るした糸の張力ではかるばね秤法と容器の水底に置いた秤ではかる水底秤法が考えられる。有限サイズの容器に底面積A,高さd,質量mの直方体を水中に入れて測定する。容器に物体をいれると水面の高さがδだけ高くなった。なお,水底秤は物体を入れる前に0に調整してあり,体積Adの水の質量をm_0とする。
それぞれの方法で測った水中の物体の重さをm'gとすると以下の結果が得られる。
水底秤法では m’g = (m-m_0)g + ρδA g
ばね秤法では m’g = (m-m_0)g
これを解釈するのに2つの立場がある。
(a) Graf はδ=0としているがこれはアルキメデスの原理に合わせるための恣意的な操作だ。
(b) δは容器のサイズに依存する境界効果であり本質的でない。
(Grafが十分広い容器を考えてδ=0としたのは自然な操作である)
((a)説の人々排除した水にこだわるのがよくわからない。下図ではだめなのかしら。)
図 Graf説の説明図
P. Mohazzabi: Archimedes’ Principle Revisited
Journal of Applied Mathematics and Physics Vol.05 No.04 836-843 (2017)
https://www.scirp.org/pdf/JAMP_2017042713382000.pdf
2019年12月22日日曜日
浮力の問題(4)
浮力の問題は(3)まで進んだ。山賀さんの理科と教育のメーリングリスト(new_rikakyouiku@s-yamaga.jp)で浮力の議論が続いている。表面張力について少し考えて投稿したのでその趣旨をメモしておく。
松川さんが板倉さんを批判して表面張力説を主張しているがあまりしっくりこない。ただ,まったく関係ないわけでもないのだろう。
例えば 5 cm × 5 cm × 5 cm の物体の周囲は 20 cm であり,この物体を接地させた状態でまわりに水を注ぐと接地面の周囲に表面張力が働く。水の表面張力の大きさは 73 dyne/cm だ。つまり 20 cm ならば 1460 dyne の表面張力が物体にほぼ下向きに(角度はわからないが)働く。つまり,1460 dyne ≒ 0.015 N ≒1.5 gwのオーダーである。効果としては小さいのではないかと思うが,実験してみないわからない。
あるいは,水銀とステンレスの分銅の場合だ。100gのステンレス製の分銅が手元にないので,アマゾンのページをにらんで,直径 2.4 cm,高さ 2.8cm くらいかと想像した。このとき,接地面の円周は 8 cm 弱である。水銀の表面張力は非常に大きく 480 dyne/cm もある。つまり,分銅の接地面の周囲に働く表面張力は,3840 dyne ≒ 0.038N ≒ 3.8 gw である。これも小さいなあ。分銅の体積は 100g ÷ 7.8 g/cm^3 ≒ 13 cm^3 なので,浮力は 13.6 g/cm^3 × 13 cm^3 = 177 gw だからどうなんだろう。
松川さんが板倉さんを批判して表面張力説を主張しているがあまりしっくりこない。ただ,まったく関係ないわけでもないのだろう。
例えば 5 cm × 5 cm × 5 cm の物体の周囲は 20 cm であり,この物体を接地させた状態でまわりに水を注ぐと接地面の周囲に表面張力が働く。水の表面張力の大きさは 73 dyne/cm だ。つまり 20 cm ならば 1460 dyne の表面張力が物体にほぼ下向きに(角度はわからないが)働く。つまり,1460 dyne ≒ 0.015 N ≒1.5 gwのオーダーである。効果としては小さいのではないかと思うが,実験してみないわからない。
あるいは,水銀とステンレスの分銅の場合だ。100gのステンレス製の分銅が手元にないので,アマゾンのページをにらんで,直径 2.4 cm,高さ 2.8cm くらいかと想像した。このとき,接地面の円周は 8 cm 弱である。水銀の表面張力は非常に大きく 480 dyne/cm もある。つまり,分銅の接地面の周囲に働く表面張力は,3840 dyne ≒ 0.038N ≒ 3.8 gw である。これも小さいなあ。分銅の体積は 100g ÷ 7.8 g/cm^3 ≒ 13 cm^3 なので,浮力は 13.6 g/cm^3 × 13 cm^3 = 177 gw だからどうなんだろう。
2019年12月21日土曜日
浮力の問題(3)
浮力の問題(2)では,皿の面に接地していることが皿面までの深さの水底の接地と同等とみなせるとした。和田さんから指摘されたとおりで,ここはやはりギャップがあった。実際の水底(水底でなくて水中の固定台上でもよいが)に置かれた物体についてはこの天秤操作ができないので,これはやはり上から吊るして張力で測定するしかない。
なお,物体の水中での重さの定義について,排除した水の重さを無視しているという指摘があった。有限サイズの容器では確かに問題になるが,物理では普通はそれは境界効果として排除し,広々とした空間で定義したいところである。
また,この定義では水底の秤とその直上の物体の間に未知の力が働いていてもこれを分離できないという説があるような気がしたが,その力が作用反作用の法則を満たす限り,秤には物体と水柱の重さの合計が加わるだけである。大気の重さを考慮しても測定対象と基準で同じとなるのでそれらは打ち消し合う。
問題と複数の解答を整理してみる。
◎超撥水材を貼り付けた軽い木片や水銀中の分銅の着底現象,海中の構築物にかかる力
などをどう考えればよいだろうか。
◎水中の物体の重さはつねにアルキメデスの原理に従うか?
・「物体上部の水柱の重さ+物体の重さ」−「物体がないときの底からの水柱の重さ」
を水柱の物体の重さとして定義すると,それは浮力と同じ大きさだけ軽くなる。
・有限サイズの容器では,排除した水の重さのために上記は成り立たない。
・あらかじめアルキメデスの原理にあうように恣意的な設定になっている。
◎水底面に置かれた物体には浮力が働くのか?
・アルキメデスの原理の公式があるので常に浮力が働く→多くの物理屋は反対
・物体と底面の間は完全には平坦にできず絶対に水がしみ込むので常に浮力が働く
・表面張力や分子間力のために浮力の消失にみえる現象が生じているだけである
・水がしみ込まない部分があり浮力はアルキメデスの原理のとおり働いていない
問題の整理はまだ不十分であった・・・orz
P. S. Mohazzabi がGrafの説をより簡単に説明していた。Limaの理論と実験がおもしろい。
[1]Archimedes, On the Floating Bodies I and selections from II
[2]アルキメデスの原理:浮力の正体の一考察(浜名湖観光局)
[3]Reconsidering Archimedes' Principle(Bierman, Kincanon 2003)
[4]Just What Did Archimedes Say About Buoyancy? (Graf 2004)
[5]Using Surface Integrals for Checking the Archimedes' Law of Buoyancy (Lima 2011)
[6]A Downward Buoyant Force Experiment (Lima, Venceslau, Brasill 2016)[7]Archimedes' Princile Revisited(Mohazzabi 2017)
なお,物体の水中での重さの定義について,排除した水の重さを無視しているという指摘があった。有限サイズの容器では確かに問題になるが,物理では普通はそれは境界効果として排除し,広々とした空間で定義したいところである。
また,この定義では水底の秤とその直上の物体の間に未知の力が働いていてもこれを分離できないという説があるような気がしたが,その力が作用反作用の法則を満たす限り,秤には物体と水柱の重さの合計が加わるだけである。大気の重さを考慮しても測定対象と基準で同じとなるのでそれらは打ち消し合う。
問題と複数の解答を整理してみる。
◎超撥水材を貼り付けた軽い木片や水銀中の分銅の着底現象,海中の構築物にかかる力
などをどう考えればよいだろうか。
◎水中の物体の重さはつねにアルキメデスの原理に従うか?
・「物体上部の水柱の重さ+物体の重さ」−「物体がないときの底からの水柱の重さ」
を水柱の物体の重さとして定義すると,それは浮力と同じ大きさだけ軽くなる。
・有限サイズの容器では,排除した水の重さのために上記は成り立たない。
・あらかじめアルキメデスの原理にあうように恣意的な設定になっている。
・アルキメデスの原理の公式があるので常に浮力が働く→多くの物理屋は反対
・物体と底面の間は完全には平坦にできず絶対に水がしみ込むので常に浮力が働く
・表面張力や分子間力のために浮力の消失にみえる現象が生じているだけである
・水がしみ込まない部分があり浮力はアルキメデスの原理のとおり働いていない
問題の整理はまだ不十分であった・・・orz
P. S. Mohazzabi がGrafの説をより簡単に説明していた。Limaの理論と実験がおもしろい。
[1]Archimedes, On the Floating Bodies I and selections from II
[2]アルキメデスの原理:浮力の正体の一考察(浜名湖観光局)
[3]Reconsidering Archimedes' Principle(Bierman, Kincanon 2003)
[4]Just What Did Archimedes Say About Buoyancy? (Graf 2004)
[5]Using Surface Integrals for Checking the Archimedes' Law of Buoyancy (Lima 2011)
[6]A Downward Buoyant Force Experiment (Lima, Venceslau, Brasill 2016)[7]Archimedes' Princile Revisited(Mohazzabi 2017)
2019年12月20日金曜日
浮力の問題(2)
浮力の問題(1)では,水底に接地した物体の重さを,物体がない水底の水圧に対する抗力と物体がある場合の抗力との差によって定義した。これは,我々が大気中で電子天秤を使う状況と同じである。なぜならば,大気圧のみが皿に加わる状態をゼロに設定した上で,空気中で物体をのせて測定しているからだ。ところで,アルキメデスの頃には電子天秤や圧力センサーはなかったので,普通の天秤で水中の物体の重さを定義する方法を考えたい。これは,Graf の論文の末尾で読者への宿題とされた問題でもある。
①: 空気中の物体Dについて
物体Dに働く重力$mg$と,皿からの抗力$R_2$が釣り合っている。また,作用反作用の法則からDが皿に及ぼす力$F_2$の大きさは$R_2$に等しい。
\begin{equation}
mg = R_2 = F_2
\end{equation}
②:水中の物体Cについて
物体Cに働く重力$mg$とCの上面への力$P_1 S$の和が,抗力$R_1$とC下面の隙間から上向きに働く力$P_2 S'$の和と釣り合っている。
\begin{equation}
\begin{aligned}
m g + P_1 S &= R_1 + P_2 S' \\
\therefore R_1 &= m g + \rho g \ell S - \rho g (\ell + d) S'\\
&= m g -\rho g d S + \rho g (\ell + d) (S - S')
\end{aligned}
\end{equation}
ここで$P_1= \rho g \ell$は深さ$\ell$における水圧であり,$P_2= \rho g (\ell+d)$は深さ$\ell+d$における水圧である。
次に,Cをのせている皿について考えてみる。皿の上面には,水圧から来る下向きの力$P_2 (\Sigma - S + S')$と抗力$R_1$の反作用の和が加わり,下面には,水圧による上向きの力$P_2 \Sigma$が働く。その差が皿に加わる下向きの力$F_1$となる。
\begin{equation}
\begin{aligned}
F_1 &= R_1 + P_2(\Sigma - S + S') - P_2 \Sigma\\
\therefore F_1 &= R_1 -\rho g (\ell+d) (S - S') \\
&= m g - \rho g d S
\end{aligned}
\end{equation}
場面設定
重力加速度を$g$とする。容器に密度$\rho$の水を入れ,表面をA,底面をBとする。簡単のため大気圧は考えない。図のように設置した天秤の皿の片方を空気中,もう一方を水中に置き,両方の皿が空のときに釣り合うように調整する。天秤の皿は非常に薄く,その質量も体積も無視することができる。
質量$m$,底面積$S$,高さ$d$の同じ直方体C,Dを用意して,図のように天秤の皿に静かにのせると同時に,天秤が水平に釣り合うように天秤の左側に質量$\Delta m$の錘を取り付けた。なお,図において,$P_i$はベクトルの始点の深さでの水圧,$R_i$は皿が物体へ及ぼす抗力,$F_i$は物体が皿に及ぼす力を表す。
また,天秤の皿の面積を$\Sigma$,物体Cの底面のうちで皿に触れていない部分の面積を$S'$とする。この部分は物体と皿の非常に狭い隙間にしみ込んだ水による水圧が働く部分に対応しており,図ではこれを片方によせて表現した。逆に,皿と物体Cが隙間なく直かに接する部分の面積は$S-S'$である。
図 物体の水中での重さを測定する天秤
物体Dに働く重力$mg$と,皿からの抗力$R_2$が釣り合っている。また,作用反作用の法則からDが皿に及ぼす力$F_2$の大きさは$R_2$に等しい。
\begin{equation}
mg = R_2 = F_2
\end{equation}
②:水中の物体Cについて
物体Cに働く重力$mg$とCの上面への力$P_1 S$の和が,抗力$R_1$とC下面の隙間から上向きに働く力$P_2 S'$の和と釣り合っている。
\begin{equation}
\begin{aligned}
m g + P_1 S &= R_1 + P_2 S' \\
\therefore R_1 &= m g + \rho g \ell S - \rho g (\ell + d) S'\\
&= m g -\rho g d S + \rho g (\ell + d) (S - S')
\end{aligned}
\end{equation}
ここで$P_1= \rho g \ell$は深さ$\ell$における水圧であり,$P_2= \rho g (\ell+d)$は深さ$\ell+d$における水圧である。
次に,Cをのせている皿について考えてみる。皿の上面には,水圧から来る下向きの力$P_2 (\Sigma - S + S')$と抗力$R_1$の反作用の和が加わり,下面には,水圧による上向きの力$P_2 \Sigma$が働く。その差が皿に加わる下向きの力$F_1$となる。
\begin{equation}
\begin{aligned}
F_1 &= R_1 + P_2(\Sigma - S + S') - P_2 \Sigma\\
\therefore F_1 &= R_1 -\rho g (\ell+d) (S - S') \\
&= m g - \rho g d S
\end{aligned}
\end{equation}
③: 天秤の釣り合いの条件
①と②によって$F_1$と$F_2$が得られた。水中においた物体Cが軽くなった分を質量$\Delta m$の錘で補償することで天秤は釣り合っている。そこで 水中の物体の重さを次式で定義する。
\begin{equation}
m'g \equiv m g -\Delta m g
\end{equation}
m'g \equiv m g -\Delta m g
\end{equation}
天秤の釣り合いの式は次のようになって,$\Delta m g$が求まる。
\begin{equation}
\begin{aligned}
F_1 + \Delta m g &= F_2 \\
m g - \rho g d S + \Delta m g &= m g \\
\therefore \Delta m g &= \rho g d S
\end{aligned}
\end{equation}
\begin{aligned}
F_1 + \Delta m g &= F_2 \\
m g - \rho g d S + \Delta m g &= m g \\
\therefore \Delta m g &= \rho g d S
\end{aligned}
\end{equation}
結論
水中の物体の重さ$m' g\,$を上図のように天秤で測る操作から定義した。このとき,高さ$d$,底面積$S$の物体の密度$\rho$の水中での重さ$m' g$と空気中での重さ$m g$との間には次式が成り立つ。これはアルキメデスの原理によって物体が浮力の分だけ軽くなる式と同じである。
\begin{equation}
m' g = m g - \rho g d S
\end{equation}
m' g = m g - \rho g d S
\end{equation}
同時にこれは,深さ$\,h\,$の水底(天秤の皿上)に接地している物体の重さを定義しているとみなすこともできる。また,$S' \to S$の極限では,水中で接地していない物体の重さの定義にもつながっている。
つまり,天秤を用いた物体の重さの定義を用いると,物体が水中にある場合と,水底に接地している場合を区別せずに扱うことができ,いずれの場合も通常の浮力の式と同じ分だけ物体が軽いとして測定される。ただし,これらの効果を共に浮力によるとするかどうかは浮力の定義の問題となる。以上の結論は,物体の底面とそれが接する容器や皿との実際の接地面の面積$\,S-S'\,$が,物体のもともとの底面積$\,S\,$とどのような比率になっているかには依存しない。
参考文献
[1]What Did Archimedes Say About Buoyancy?(E. H. Graf)
The Physics Teacher Vol. 42 296-299 (2004)
[2]アルキメデスは浮力の原理をどう説明したか(右近修治)
物理学通信 No.117 (2004)
2019年12月19日木曜日
浮力の問題(1)
流体中あるいは流体に浮かぶ物体には,物体がおしのけた流体の重さに等しい浮力が重力と逆向きに働く。流体が存在する領域の水平な底面に物体が接地した場合にも,流体中に物体がある場合と同じ大きさの浮力が働くかどうかについては議論が続いていた。
底面Bに接地したCを持ち上げる場合
次の条件を満たしながら,$T_3$をゼロから徐々に増やすと,その分だけ$R_3$が減少することになる。
$T_3 + R_3 = mg + \rho g (h-d) S$
ここで,$R_3=\rho g h S$に達したときに,$T_3 = mg - \rho g d S$となって,②の状況と等しくなり,隙間に水が入った場合と同じ条件が満たされる。このとき物体Cが離床することができる。
場面設定
次のような状況を設定する。表面をA,底面をB(AとBの距離は$h$)とする密度$\rho$の水が重力加速度$g$の一様重力場にある。Aの上方は空気(密度は0に近似できる)であり,Bの下方は硬い地面である。張力$T_i$のヒモでつるした質量$m$,底面積$S$,高さ$d$の直方体のブロックCがあり,徐々に水中に沈めてゆく。なお,図において,$P_i$はベクトルの始点の深さでの水圧,$R_i$は底面Bからの抗力を表す。
図 浮力の問題設定
次に,図のそれぞれの場合について説明する。
①:Cが空気中にある場合
重力$mg$と張力$T_1$が釣合っている。そこで,物体Cの重さ$mg$は張力$T_1$の測定で得られる。
$mg = T_1$
②:Cが水中にある場合
重力$mg$とCの上面への力$P_1 S$の和が,張力$T_2$とCの下面への力$P_2 S$の和と釣合っている。
$T_2 + P_2 S = mg + P_1 S$
ここで$P_2= \rho g (\ell+d)$は深さ$\ell+d$における水圧であり,$P_1= \rho g \ell$は深さ$\ell$における水圧である。そこで,水中での物体Cの重さ$m'g$はこれと釣合う張力$T_2$の測定で得られる。
$m'g = T_2 = mg + (P_1-P_2) S = mg -\rho g d S$
つまり,$mg$と比べて$m'g$は $\rho g d S = M g $だけ小さくなる。ここで,$M=\rho d S$は物体Cが押しのけた水の質量に等しい。こうして張力をはかるバネ秤を用いて操作的に浮力を定義することができる。
なお,図の$R_2$は次の議論で用いるもので,物体Cの底面積Sに等しい大きさの底面Bの領域に加わる水柱の重さ$\rho g h S$に対する底面の抗力であり,$R_2=\rho g h S$である。
③:Cが底面Bに接地している場合
重力$mg$とCの上面への力$P_3 S$の和が,張力$T_3$と抗力$R_3$の和と釣合っている。
$T_3 + R_3 = mg + P_3 S = mg + \rho g (h-d) S$
これは,$T_3$と$R_3$の和についての条件であり,それぞれを独立に決定することはできない。したがって,先ほどのように張力の差から浮力を議論することができない。そこで,張力$T_3=0$とした場合の抗力$R_3$だけを考えてみよう。
水中の底面に物体Cの底面と同じ面積Sの測定面を持つ秤を設置して,そこに物体Cをのせた場合とのせない場合の差をもって,水中の物体の重さを測る操作を定義する。このとき,$R_3-R_2$が水中の物体Cの重さ$m'g$であるとみなせることになる。
$m'g = R_3-R_2 = mg + \rho g (h-d) S - \rho g h S = mg - \rho g d S$
このように考えた場合も,水底に接地した物体の重さは空気中の物体の重さに
対して,浮力の法則と同じ分だけ軽くなることになる。ただし,これを浮力とよぶか
どうかは定義の問題となる。
底面Bに接地したCを持ち上げる場合
次の条件を満たしながら,$T_3$をゼロから徐々に増やすと,その分だけ$R_3$が減少することになる。
$T_3 + R_3 = mg + \rho g (h-d) S$
ここで,$R_3=\rho g h S$に達したときに,$T_3 = mg - \rho g d S$となって,②の状況と等しくなり,隙間に水が入った場合と同じ条件が満たされる。このとき物体Cが離床することができる。
物体Cが水の密度より小さい場合
この場合,$\rho gdS > mg$となり,何らかの束縛力によって水中で静止させた物体は,束縛力がなくなると重力と逆方向に動き始める(浮かび上がる)。ところが,この物体が完全に底面に設置していて物体と底面の間に流体が入らない場合は,$mg + \rho g (h-d) S > 0$であるため浮かび上がることはない。これを浮力の消失とよぶかどうかも浮力の定義の問題となる。実験的には完全に流体が入らない状態をつくることはできないという説と水銀と鉄の場合や超撥水材を用いる場合には近似的に可能であるという説がある。
青森県の高校入試問題
平成31年度の青森県立高等学校の入学試験の理科で物体が着底した場合の浮力の問題が
出題された。問題についての疑義が提出されたため4度にわたって解答の修正が行われた。この問題では水深$h$が与えられていないので,解答不能な問題ではないだろうか。
もし$h$が与えられていたとしても,浮力の実験値が2通りに与えられていることや,中学校の学習範囲を越える水底での浮力の考え方が問われているために不適当な問題である。
理化学辞典による浮力の定義
地球上(一様な重力場)では,流体内にある物体はその表面に作用する圧力のため全体として鉛直上向きの力をうける。これを浮力という。浮力の大きさと作用点とは,物体のおしのけた流体の重さと重心に一致する(アルキメデスの原理)。浮力の作用点を浮心とよぶ。
参考文献
[1]What Did Archimedes Say About Buoyancy?(E. H. Graf)
THE PHYSICS TEACHER Vol. 42 296-299 (2004)
[2]アルキメデスは浮力の原理をどう説明したか(右近修治)
物理学通信 No.117 40-44 (2004) (理科と教育MLでの西尾信一先生の報告から 2019.12)
[3]水の底にピタリと着床すれば浮力は無くなるの?(松川利行)
[4]下面にはたらく水圧で浮力が生じることを示す実験(矢野幸夫)
物理教育 第61巻第2号 57-60 (2013)
[5]浮力の原因の話(左巻健男)
[6]超撥水材を使って浮力を無くす(MAX-V・・・夏目雄平さん発案の方法より)
[7]平成31年度青森県立高等学校入学者選抜学力検査問題
[8]平成31年度青森県立高校入試理科大問[5]の疑義について(英進塾)
2019年12月18日水曜日
聖火リレー
2020オリンピックはやめてほしいと思っているものの一人ではあるが,ニュースがあるとついつい見てしまうのが心の弱い証拠である。聖火リレーのコースが発表されたというので,奈良県はどうなっているのか探してみたら見つかった。
えーっ,人間が走る部分はこんなに離散化されているのか。県を跨ぐ部分は車で輸送するのだろうと想像していたが,実は市町村単位で細切れになっていた。1964年もそうだったのだろうか。
えーっ,人間が走る部分はこんなに離散化されているのか。県を跨ぐ部分は車で輸送するのだろうと想像していたが,実は市町村単位で細切れになっていた。1964年もそうだったのだろうか。
2019年12月17日火曜日
記述式問題導入見送り
文部科学省はようやく記述式問題の導入見送りを発表した。ベネッセの関連会社である株式会社学力評価研究機構は,ベネッセとの関係性や会社の概要も十分に説明できない不透明な状態のようだ。安倍や下村らによる官邸主導型の文教政策が,その実現可能性や妥当性についての文部科学官僚の十分な検証を妨げてしまった結果,非常に無理のあった大学入試の民営化路線がついに破綻したということだろう。ベネッセと関係の深い鈴木寛が防衛にでてきたが,総スカンをくらっている始末だった。しかし,まだ生き延びているものも多く,今後の巻き返しによってどうなるかは不透明な状況が続く。
[1]民間背後の教育改革は格差拡大の失敗を繰り返す(大内裕和)
[2]かくして英語民間試験・国数記述式問題導入は自滅した(上)(南風原朝和)
[3]かくして英語民間試験・国数記述式問題導入は自滅した(下)(南風原朝和)
[1]民間背後の教育改革は格差拡大の失敗を繰り返す(大内裕和)
[2]かくして英語民間試験・国数記述式問題導入は自滅した(上)(南風原朝和)
[3]かくして英語民間試験・国数記述式問題導入は自滅した(下)(南風原朝和)
2019年12月16日月曜日
福田美術館
2019年の10月,京都の嵐山渡月橋近くの桂川沿いに,アイフルの創業者の福田吉孝が設立したのが福田美術館である。福田の娘の川畑美佐が館長を務めている。
江戸時代の京都画壇などを中心に1500点の作品を所蔵しているコンパクトな建物で,2つのギャラリー,1つのオープンギャラリー,カフェなどで構成されている。カフェからは庭園ごしに桂川と渡月橋を見晴らすことができる最高のロケーションである。隣の渡月橋に近い側に星野リゾートの外国人富裕層向け超高級ホテルが建設中なのであった。
10月1日から1月13日まで,開館記念福美コレクション展をⅠ期Ⅱ期に分けて開催している。美術館にしては珍しく月曜日でなく火曜日が休館日となっていたので月曜に妻と訪れた。目玉の若冲の「群鶏図押絵貼屏風」もよかったが,木島桜谷(このしまおうこく)の「駅路之春」もやさしく,北斎の天狗や天文学者もおもしろかった。そういえば,木島桜谷はNHKの日曜美術館で「寒月」が取り上げられていたのを見たことがあった。橋本関雪の「後醍醐帝」は残念ながら第Ⅰ期の展示のみだったので見ることはできなかった。
江戸時代の京都画壇などを中心に1500点の作品を所蔵しているコンパクトな建物で,2つのギャラリー,1つのオープンギャラリー,カフェなどで構成されている。カフェからは庭園ごしに桂川と渡月橋を見晴らすことができる最高のロケーションである。隣の渡月橋に近い側に星野リゾートの外国人富裕層向け超高級ホテルが建設中なのであった。
10月1日から1月13日まで,開館記念福美コレクション展をⅠ期Ⅱ期に分けて開催している。美術館にしては珍しく月曜日でなく火曜日が休館日となっていたので月曜に妻と訪れた。目玉の若冲の「群鶏図押絵貼屏風」もよかったが,木島桜谷(このしまおうこく)の「駅路之春」もやさしく,北斎の天狗や天文学者もおもしろかった。そういえば,木島桜谷はNHKの日曜美術館で「寒月」が取り上げられていたのを見たことがあった。橋本関雪の「後醍醐帝」は残念ながら第Ⅰ期の展示のみだったので見ることはできなかった。
写真:福田美術館カフェからの眺めと館内(2019.12.16撮影)
2019年12月15日日曜日
GIGAスクール構想
令和元年度の補正予算(第1号)は,Ⅰ 災害からの復旧・復興と安全・安心の確保(2兆3千億円),Ⅱ 経済の下振れリスクを乗り越えようとする者への重点支援(9千億円),Ⅲ 未来への投資と東京オリンピック・パラリンピック後も見据えた経済活力の維持・向上(1兆1千億円)のなかで,Ⅲ 2. Society5.0時代を担う人材投資、子育てしやすい生活環境の整備(3千億円)のなかに,GIGAスクール構想の実現(2,318億円=公立2,173億円+私立119億円+国立26億円)が盛り込まれた。校内LANと電源キャビネットと端末の費用であり,補助率は1/2だ。
小中学校における1人1台のPC導入とそれにかかわる高速大容量通信ネットワーク環境整備のための予算であり,2018年度からの教育ICT環境整備5年計画のなかに位置づけられるようだ。
一方で,令和2年度の概算要求には,GIGAスクールネットワーク構想3年計画の初年度として,375億円が計上されていた。全国3.6万校すべての学校に10Gbpsの無線LANを整備するため,1/2の補助を行うというもの。
うーん,日本の学校のICT活用度は世界最低水準ではあるけれど,この方向性でよいのかどうか。1人1台のPC導入形態は保留するとしても,ネットワーク整備はいずれにせよ必要なのかもしれない。
[1]GIGAスクール構想の実現について(文部科学省)
[2]教育の情報化に関する手引き(令和元年12月)(文部科学省)
小中学校における1人1台のPC導入とそれにかかわる高速大容量通信ネットワーク環境整備のための予算であり,2018年度からの教育ICT環境整備5年計画のなかに位置づけられるようだ。
一方で,令和2年度の概算要求には,GIGAスクールネットワーク構想3年計画の初年度として,375億円が計上されていた。全国3.6万校すべての学校に10Gbpsの無線LANを整備するため,1/2の補助を行うというもの。
うーん,日本の学校のICT活用度は世界最低水準ではあるけれど,この方向性でよいのかどうか。1人1台のPC導入形態は保留するとしても,ネットワーク整備はいずれにせよ必要なのかもしれない。
[1]GIGAスクール構想の実現について(文部科学省)
[2]教育の情報化に関する手引き(令和元年12月)(文部科学省)
2019年12月14日土曜日
円周率プール
円周率の求め方には様々あっておもしろい。最近再び話題になっていたのが,2003年にGalperinが出した論文,"Playing Pool with Pi (The Numer π from a Billiard Point of View)" とその動画。プールはビリヤード台のことかと思っていたら,ポケットビリヤードのことだった。穴に落ちたビリヤードボールがたまるのでプールらしい。
質量の異なる2球と壁の弾性衝突から円周率がみごとに求まる理論の詳しい説明は,京都府立嵯峨野高等学校の橋本雄馬先生の「物体の衝突と円周率」にある。とてもわかりやすく丁寧な説明がされている。
動画の方もいろいろあるようだが,"The Most Unexpected Answer to A Counting Puzzle"がよかった。
この衝突計算機で他の定数が出ないかを考えようとしたけれど,なかなか難しそうだったので3分で挫折した。
質量の異なる2球と壁の弾性衝突から円周率がみごとに求まる理論の詳しい説明は,京都府立嵯峨野高等学校の橋本雄馬先生の「物体の衝突と円周率」にある。とてもわかりやすく丁寧な説明がされている。
動画の方もいろいろあるようだが,"The Most Unexpected Answer to A Counting Puzzle"がよかった。
この衝突計算機で他の定数が出ないかを考えようとしたけれど,なかなか難しそうだったので3分で挫折した。
2019年12月13日金曜日
メルカリ初登場
メルカリへの出品というかメルカリンになることを勧められ,こども服等を出品してはや2ヶ月。これはだめだろうと忘れかけていたら,突如オファーが来ていることに気付いた。放置して普段チェックしていなかったので,本当に偶然のタイミングだ。で,とんとん拍子に話が進んで購入していただいたので,あわててセブンイレブンに駆け込んだ。なるほど,こういう仕組みになっていたのか。後は評価を待つだけのようだ。なかなか面倒なものでもあるが,慣れたらしまいなのかもしれない。
2019年12月12日木曜日
機械学習と公平性
2019年12月10日に,人工知能学会 倫理委員会・日本ソフトウェア科学会 機械学習工学研究会・
電子情報通信学会 情報論的学習理論と機械学習研究会の三者が連名で「機械学習と公平性に関する声明」を発表した。
声明を出した背景としては,2018年10月にAmazon.comが採用時に利用していた機械学習システムが女性に対して不利益に働くことに気づいてこのシステムの利用を停止したという報道を挙げている。
しかし,それでは時間が開きすぎている。直接書かれてはいないが,東京大学大学院情報学環・学際情報学府の特任准教授が11月20日にTwitter上で差別的な発言をして,それが炎上したことがきっかけになっている。
情報学環長・学際情報学府長の越塚登先生は,11月24日に学内向け文書,11月26日に学生向けMLでメッセージを発しており,それを11月28日には公開している。それなりに迅速な対応がなされたと思う。
一方,当該教員の属する寄付講座についても,マネックス証券はただちに見解を発表し,寄付の停止に至るようだ。
機械学習が社会にもたらす影響は非常に大きなものになりそうだ。センサーが張り巡らされた社会を,センサーの塊をつねに携帯しながら活動する個人が,ほとんどの情報を無担保に預けながら,ブラックボックスにつつまれたプロセスで評価される社会だ。機械学習の説明責任(というか説明システムの理論的な研究や開発)についての議論もスタートしている。
P. S. 大澤昇平はネトウヨにアピールしながら寄付を集め始めたようだ(2019.12.12)。
[1]学環・学府特任准教授の不適切な書き込みに関する学生へのメッセージ(2019.11.28)
[2]学環・学府特任准教授の不適切な書き込み等に関する調査委員会の設置について(2019.11.28)
[3]学生留学生委員会から情報学環・学際情報学府の学生の皆さんへ(2019.11.29)
[4]大澤昇平特任准教授による2019.12.12付のSNS書込みに対する見解(2019.12.13)
[5]寄付講座担当特任准教授の不適切な書き込みに関する見解(マネックス 2019.11.24)
[6]寄付講座担当特任准教授の不適切な書き込みに関する当社の見解について(オークファン 2019.11.25)
[7]Japanese academia appears soft on racism(ASIA TIMES 2019.11.25)
[8]Announcement: terminating our business relationship with Daisy AI (Streamer 2019.11.27)
電子情報通信学会 情報論的学習理論と機械学習研究会の三者が連名で「機械学習と公平性に関する声明」を発表した。
声明を出した背景としては,2018年10月にAmazon.comが採用時に利用していた機械学習システムが女性に対して不利益に働くことに気づいてこのシステムの利用を停止したという報道を挙げている。
しかし,それでは時間が開きすぎている。直接書かれてはいないが,東京大学大学院情報学環・学際情報学府の特任准教授が11月20日にTwitter上で差別的な発言をして,それが炎上したことがきっかけになっている。
情報学環長・学際情報学府長の越塚登先生は,11月24日に学内向け文書,11月26日に学生向けMLでメッセージを発しており,それを11月28日には公開している。それなりに迅速な対応がなされたと思う。
一方,当該教員の属する寄付講座についても,マネックス証券はただちに見解を発表し,寄付の停止に至るようだ。
機械学習が社会にもたらす影響は非常に大きなものになりそうだ。センサーが張り巡らされた社会を,センサーの塊をつねに携帯しながら活動する個人が,ほとんどの情報を無担保に預けながら,ブラックボックスにつつまれたプロセスで評価される社会だ。機械学習の説明責任(というか説明システムの理論的な研究や開発)についての議論もスタートしている。
P. S. 大澤昇平はネトウヨにアピールしながら寄付を集め始めたようだ(2019.12.12)。
[1]学環・学府特任准教授の不適切な書き込みに関する学生へのメッセージ(2019.11.28)
[2]学環・学府特任准教授の不適切な書き込み等に関する調査委員会の設置について(2019.11.28)
[3]学生留学生委員会から情報学環・学際情報学府の学生の皆さんへ(2019.11.29)
[4]大澤昇平特任准教授による2019.12.12付のSNS書込みに対する見解(2019.12.13)
[5]寄付講座担当特任准教授の不適切な書き込みに関する見解(マネックス 2019.11.24)
[6]寄付講座担当特任准教授の不適切な書き込みに関する当社の見解について(オークファン 2019.11.25)
[7]Japanese academia appears soft on racism(ASIA TIMES 2019.11.25)
[8]Announcement: terminating our business relationship with Daisy AI (Streamer 2019.11.27)
登録:
投稿 (Atom)