2021年11月10日水曜日

忌日

 11月10日は特異日だ。母と祖母二人(父の義母と実母)の命日が重なっている。したがって,我が家の女性陣は,特に注意して過ごさなければならない日になっている。

朝の散歩で,らじるらじるから今日は何の日というのが流れてくる。それによると,11月10日は,2009年に森繁久彌,2012年に森光子,2014年に高倉健が亡くなった日らしい。まあ,それはどうでもいいのだけれど・・・


2021年11月9日火曜日

フェルミ分布

 $N$個の粒子系の全エネルギーを$E$とする。$i$番目の箱には,$g_i$個の 区別できない状態 があり,1粒子エネルギー$u_i$を持つ$n_i$個の粒子がこれらの状態に配置されている。ただし,$i=(1,...,M)$とする。各粒子は区別できず,$g_i$個の状態には 1個まで入ることができる。Maxwell=Boltzmann分布の場合と同様の式で,このエネルギー分配の場合の数の対数$\log W$の極値問題を考えればよい。

粒子の区別がないので,その個数だけに着目しなければならない。$i$番目の箱に,$g_i$通りの状態があって,$n_i$個の粒子を配置する場合の数$W_i$を考える。

$n_i$個の粒子とスリットをセットにしたものと,残りの$g_i-n_i$個の状態のスリットを混ぜて並べ,区別できない同種のパターンの数で割ることにすると,$W_i=C_{n_i}^{n_i+g_i-1}=\frac{g_i!}{n_i! (g_i-n_i)!}$とすればよい。

スターリングの公式を適用すると,$\log W = \sum_{i=1}^M \log W_i = \sum_{i=1}^M (g_i\log g_i-g_i -n_i \log n_i +n_i -(g_i-n_i) \log (g_i-n_i) +g_i -n_i)$。これから,$\delta \log W = (\log(g_i-n_i) -\log n_i ) dn_i$となる。

また,粒子数とエネルギーの制約条件をラグランジュ未定乗数法で取り込めば,

$\delta \{ \log W +\alpha (N-\sum_{i=1}^M n_i) + \beta (E - \sum_{i=1}^M u_i n_i) \} = 0$より,$\sum_{i=1}^M(\log(g_i-n_i)-\log n_i -\alpha -\beta u_i)dn_i = 0$。したがって,$\log(g_i-n_i)-\log n_i -\alpha -\beta u_i = 0$

より,$\frac{g_i-n_i}{n_i}=e^{\alpha + \beta u_i}$であり,状態の占有率は$f_i=\dfrac{n_i}{g_i}= \dfrac{1}{e^{\alpha + \beta u_i}+1} = \dfrac{1}{e^{\frac{u_i-\mu}{k_B T}}+1}$となる。

2021年11月8日月曜日

伝書鳩

 日曜日の朝,ベランダにハトがいた。ヒヨドリやその仲間はときどきやってきて手すりに留まっているが,人の気配がするとすぐに逃げてしまう。家の近所はスズメやカラスだけでなく,セキレイやツグミ,池や田んぼにシロサギ,アオサギ,カモなどをたくさん見かける環境だ。

マンションには時々厄介なカワラバト(ドバト)が増える年があって,捕獲駆除サービスをお願いすることもある。ところが,このハトは逃げないのである。よく見ると赤と白の脚輪が左右にあり,何やら文字や数字が書かれている。近寄って写真を撮っても平気で餌になる金木犀の花びらをついばんでいた。

調べてみると,伝書鳩(レース鳩)のようだ。日本伝書鳩協会日本鳩レース協会があって,それぞれ固有の番号をつけている。家に来たハトはどうやら伝書鳩協会山口県周南支部の所属らしい。白い脚輪には連絡先が書いてあるのだけれど,汚れが固着している上にハトが逃げるので読み取れない。

伝書鳩協会のページには,迷い鳩の対処方法が書いてあった。どうしましょうどうしましょうと困っているうちに,夕方にはどこかに行ってしまったので,めでたしめでたしとなった。

月曜日の朝,ベランダにハトが帰ってきた。流石に居付かれると困るので,東京の伝書鳩協会本部に電話してみた。どうやらハトを捕獲してその番号を確認しないことには次の手順に進めないらしい。ハトは賢いし素早いので,カメのような爺さんには簡単に捕まらないのである。

何度も失敗を重ねた末に,ベランダに落ちている草の実などを食べているところを背後から掴むことに成功した。早速,脚輪の番号を確認してもらうと,山口県の飼い主の電話番号が判明したので連絡してみた。滋賀県琵琶湖畔からのレースで迷ったものらしい。調べてみると今年の春にも坂本発の400kmレースがあった。平均分速300mで,20-21時間かけて400km離れた自宅まで帰るものらしく,36羽放って2羽しか帰還していない。おいおい。

どうやら京都の支部(都クラブ)の人が取りに来てくれるらしいが,それまで米粒でもやっといてくださいとのリクエストだった。

P. S. 道に迷ったとかで,夜7時過ぎに取りに来られた。協会の規約ということで,お礼をいただく。やはり長距離のレースでは多くのハトが戻ってこないようで,こういうのはレアケースとのこと。山口県までは郵便局のハト専用パッケージで返送されるらしい。


写真:日曜日のハト(赤が協会脚輪,白が個人脚輪)

2021年11月7日日曜日

ボース分布

ボルツマン分布からの続き 

$N$個の粒子系の全エネルギーを$E$とする。$i$番目の箱には,$g_i$個の区別できない状態があり,1粒子エネルギー$u_i$を持つ$n_i$個の粒子がこれらの状態に配置されている。ただし,$i=(1,...,M)$とする。各粒子は区別できず,$g_i$個の状態には何個でも入ることができる。Maxwell=Boltzmann分布の場合と同様の式で,このエネルギー分配の場合の数の対数$\log W$の極値問題を考えればよい。

粒子の区別がないので,その個数だけに着目しなければならない。$i$番目の箱に,$g_i$通りの状態があって,$n_i$個の粒子を配置する場合の数$W_i$を考える。

$g_i-1$個の状態のスリットと$n_i$個の粒子を混ぜて並べ,区別できない同種のパターンの数で割ることにすると,$W_i=C_{n_i}^{n_i+g_i-1}=\frac{(n_i+g_i-1)!}{n_i! (g_i-1)!}$とすればよい。

スターリングの公式を適用すると,$\log W = \sum_{i=1}^M \log W_i = \sum_{i=1}^M ((n_i+g_i)\log (n_i+g_i)-(n_i+g_i) -n_i \log n_i +n_i -g_i \log g_i +g_i)$。これから,$\delta \log W = (\log(n_i+g_i) -\log n_i ) dn_i$となる。\\

また,粒子数とエネルギーの制約条件をラグランジュ未定乗数法で取り込めば,

$\delta \{ \log W +\alpha (N-\sum_{i=1}^M n_i) + \beta (E - \sum_{i=1}^M u_i n_i) \} = 0$より,$\sum_{i=1}^M(\log(n_i+g_i)-\log n_i -\alpha -\beta u_i)dn_i = 0$。したがって,$\log(n_i+g_i)-\log n_i -\alpha -\beta u_i = 0$

より,$\frac{n_i+g_i}{n_i}=e^{\alpha + \beta u_i}$であり,状態の占有率は$f_i=\dfrac{n_i}{g_i}= \dfrac{1}{e^{\alpha + \beta u_i}-1} = \dfrac{1}{e^{\frac{u_i-\mu}{k_B T}}-1}$となる。

2021年11月6日土曜日

白骨の御文

本願寺第八代の 蓮如上人(1415-1499)が,布教のために教義を手紙の形で書いたものが御文(御文章)である。小学校6年の修学旅行は東尋坊へのバス旅行だった。その途中で蓮如の北陸布教の中心地であった吉崎御坊に立ち寄っている。金沢も浄土真宗(一向宗)の重要な活動地域の一つだったので,蓮如に関わる事跡には事欠かない。

さて,法事では,終盤に御文の中でも有名な白骨の御文を読み上げられることが多い。なんだかよくわからないお経(阿弥陀経,無量寿経,観無量寿経)や正信偈の後にこれが来ると,何回も耳にしているうちになんとなく意味というか雰囲気がわかってくる。

真宗大谷派では,以下のような文節の区切りの最後の一字を下げて読み上げることになっていた(浄土真宗本願寺派の御文章のyoutubeを見るとやはりちょっと違うようだ)。

夫(それ),人間の浮生(ふしょう)なる相をつらつら観ずるに↓,おほよそ,はかなきものはこの世の始中終(しちゅうじゅう)↓,まぼろしのごとくなる一期(いちご)なり↓。

さればいまだ萬歳(まんざい)の人身(にんじん)ノうけたりとゆう事をきかず↓。一生すぎやすし↓。いまにいたツてたれか百年の形躰(ぎょうたい)をたもつべきや↓。我やさき人やさき↓,きょうともしらずあすともしらず↓,おくれさきだつ人は↓,もとのしずく,すえの露よりもしげしといえり↓。

されば朝(あした)には紅顔あツて↓夕(ゆうべ)には白骨となれる身なり↓。すでに,無常の風きたりぬれば↓,すなわちふたつのまなこたちまちにとじ↓,ひとつのいきながくたえぬれば↓,紅顔むなしく変じて↓,桃李(とうり)のよそおいをうしないぬるときは↓,六親眷属(ろくしんけんぞく)あつまツてなげきかなしめども↓,更にその甲斐あるべからず↓。

さてしもあるべき事ならねばとて↓,野外(やがい)に送ツて夜半(よわ)のけむりとなしはてぬれば↓,ただ白骨のみぞのこれり↓。あわれといふも中々おろかなり↓。されば,人間のはかなき事は↓,老少不定(ろうしょうふじょう)のさかいなれば↓,たれの人も早く後生(ごしょう)の一大事を心にかけて↓,阿弥陀佛トふかくたのみまいらせて↓,念彿もうすべきーものなり。 あなかしこ,あなかしこ。

2021年11月5日金曜日

ボルツマン分布

図:ボルツマン分布のイメージ

$N$個の粒子系の全エネルギーを$E$とする。$i$番目の箱には,$g_i$個の区別できる状態があり,1粒子エネルギー$u_i$を持つ$n_i$個の粒子がこれらの状態に配置されている。ただし,$i=(1,...,M)$とする。各粒子は区別できるとして,$g_i$個の状態には粒子がいくつでも入ることができる。このエネルギー分配の場合の数$W$($W$自身は非常に大きな数なので,その対数$\log W$で考える)が最大になるのはどのような粒子配置$\{ n_i / g_i \}$のときかという問題を考える。この条件を式で表すと,

$\displaystyle \delta \log W = \sum_{i=1}^M \frac{\partial \log W}{\partial n_i} \delta n_i = 0, \ \  \sum_{i=1}^M n_i = N\  (\sum_{i=1}^M \delta n_i = 0), \ \  \sum_{i=1}^M u_i n_i=E\ (\sum_{i=1}^M u_i \delta n_i = 0)$

1番目の箱に$N$個の粒子から取り出した$n_1$個の粒子を入れて,$g_1$個の状態に配置する場合の数は,$W_1=C_{n_1}^N g_1^{n_1}$である。続いて,2番目の箱に残りの$N-n_1$個の粒子から取り出した$n_2$個の粒子を入れて,$g_2$個の状態に配置する場合の数は,$W_2=C_{n_2}^{N-n_1} g_2^{n_2}$となる。従って,$i$番目の箱$g_i$に$n_i$個の粒子を入れて配置する場合の数は,$W_i=C_{n_i}^{N-\sum_{k=1}^{i-1}n_k} g_i^{n_i}$となる。これを続けると,最終的な場合の数は,各箱の場合の数$W_i$の積で,$W=\prod_{i=1}^M W_i = \dfrac{N!g_1^{n_1} g_2^{n_2} \cdots g_M^{n_M}}{n_1! n_2! \cdots n_M!}$となる。

自然数$n$の階乗$n!$の対数$\log n!$についてのスターリングの公式は,$n!=n \log n -n \ (n \gg 1)$であるから,これを用いて $\log W$を表すと,$\log W = N \log N - N +\sum_{i=1}^M (n_i \log g_i - n_i \log n_i - n_i )$。そこで,$\delta \log n_i = \frac{1}{n_i} \delta n_i$を用いると,$\delta \log W = \sum_{i=1}^M (\log g_i - \log n_i)\ \delta n_i$となる。

ところで,$n_i$は独立ではなくて制約条件がついている。これを簡単に処理するためにラグランジュの未定乗数法を用いれば,$n_i$を独立変数のように扱うことができる。$\alpha$と$\beta$を,それぞれ粒子数一定,エネルギー一定の制約条件に対応する2つの未定乗数として,

$\delta \{ \log W + \alpha (N-\sum_{i=1}^M n_i) + \beta (E-\sum_{i=1}^M u_i n_i) \}=0$, $\sum_{i=1}^M (\log g_i -\log n_i - \alpha - \beta u_i) \delta n_i = 0$。$\delta n_i$は独立にとってよいので,$\log g_i-\log n_i - \alpha - \beta u_i=0$であり,$n_i = g_i e^{-\alpha} e^{-\beta u_i}$となる。

ここで,状態の占有率$f_i$は,$f_i=\frac{n_i}{g_i}=\frac{1}{e^{\alpha + \beta u_i}}$となる。この$\alpha,\ \beta$は,統計力学的なエントロピーと熱力学的なエントロピーの関係式から定まる。すなわち,$S=k_B \log W, dS = k_B\ d\log W = k_B \sum_{i=1}^M \log \frac{g_i}{n_i} d n_i = k_B  \sum_{i=1}^M (\alpha + \beta u_i) d n_i$

$\therefore dS= k_B (\alpha dN + \beta dU) = -\mu \frac{dN}{T} + \frac{dU}{T}$から,$\alpha = -\frac{\mu}{k_B T},\ \beta = \frac{1}{k_B T}$であり,$f_i = e^{-\frac{u_i - \mu}{k_B T}}$となる。

2021年11月4日木曜日

TikZの反復と分岐

数理的なモデルと関連した 図を書くのにPowerPointはちょっと使いにくい。MathematicaJuliaでも表現力の自由度が足りない。そこで,PGF/TikZの登場となる。その機能を十分に生かそうとすると,TikZ環境でのプログラミングが必要であり,変数の処理や反復・分岐などが求められる。

PGF/TikZについては,Tantauの1300pを超えるマニュアルがあるのだけれど,これがまた詳しすぎて読みにくい。そんなわけで,日本語の適当な解説書を探すのだけれどこれがまたないのだった。そんなわけで,ボルツマン分布の概念図を作図しようとしていきなりつまづいた。

反復の方は\foreachを使うというところまではいいのだが,これに条件分岐を入れるとなんだかやヤコしい。しかも,堪え性のない老人は,最近の大学生のように真面目に調べずにネット情報を漁ってつまみ食いしようとするものだから,訳がわからない状態になるのであった。

小学生からのプログラミング教育は,いっそのことLaTeX+PGF/TikZにしたらいいのではないかとしみじみ思う今日この頃です。Pictogrammingと合体できないものか。まあグダグダ言いながらなんとか,解決方法の1つが見つかった。

/begin{tikzpicture}
\draw[step=2, dotted] (0,0) grid (13,2);
\foreach \x [count=\i]in {1,3,...,13}
{
\draw (\x,-0.5) node{\$(n_\i,u_\i)\$};
\foreach \y in {1,...,8}
\pgfmathsetmacro{\col}{ifthenelse(rnd*8 > \y,"white",ifthenelse(rnd*8 <\y,"gray","white"))}
\draw[fill,\col] (\x+rnd*1.6-0.8, rnd*1.6+0.2) circle(0.05);
}
\end{tikzpicture}

少し違うタイプの問題が出ても対応できる自信はまったくない,勉強不足なのであった。


図:TikZの例,\foreachとifthenelseとrndを組み合わせたもの


2021年11月3日水曜日

平均自由行程(3)

平均自由行程(2)からの続き

2種類の気体分子A(密度$\rho_{\rm A}$,質量  $m_{\rm A}$,速度 $\bm{v}_{\rm A}$)と気体分子B(密度$\rho_{\rm B}$,質量$m_{\rm B}$,速度 $\bm{v}_{\rm B}$)からなる温度$T$の気体中の分子の平均自由行程を考える。両分子の衝突断面積を$\sigma_{\rm AB}$とし,それぞれはマクスウエル分布$F_{\rm A}(\bm{v}_{\rm A}),\  F_{\rm B}(\bm{v}_{\rm B}) $に従って運動しているとする。

つまり,単位体積中で,速度$\bm{v}_{\rm K} \sim \bm{v}_{\rm K}+d\bm{v}_{\rm K}$にある${\rm K}$種の分子の数は,$dn_{\bm K}= \rho_{\rm K} F(\bm{v}_{\rm K}) d\bm{v}_{\rm K} = \rho_{\rm K} \Bigl( \frac{m_{\rm K}}{2\pi k_B T} \Bigr)^{3/2} \exp (-\frac{m_{\rm K} \bm{v}_{\rm K}^2}{2 k_B T}) d\bm{v}_{\rm K} $となる。

そこで,上記の速度空間にある分子の衝突回数は,相対速度を$\bm{u}=\bm{v}_{\rm A}-\bm{v}_{\rm B}$として,$dZ_{\rm AB} = \sigma_{\rm AB} |\bm{u}| dn_{\bm A} dn_{\bm B}$となる。そこで,単位体積,単位時間当たりの全衝突回数は,$Z_{\rm AB} = \int d n_{\rm A}  \int d n_{\rm B}  \ \sigma_{\rm AB} |\bm{u}| $となる。

次に,衝突する各分子の速度$\bm{v}_{\rm A},\ \bm{v}_{\rm B}$を相対速度$\bm{u}$と重心速度$\bm{V}$で表す。重心速度は,$\bm{V}=\frac{m_{\rm A} \bm{v}_{\rm A}+ m_{\rm B} \bm{v}_{\rm B}}{m_{\rm A}+m_{\rm B}}= \frac{m_{\rm A} \bm{v}_{\rm A}+ m_{\rm B} \bm{v}_{\rm B}}{M}$であり,$\bm{v}_{\rm A}=\bm{V}+\frac{m_{\rm B}}{M}\bm{u},\ \bm{v}_{\rm B}=\bm{V}-\frac{m_{\rm A}}{M}\bm{u}$となる。ただし衝突する2分子の全質量は,$M=m_{\rm A}+m_{\rm B}$であり,換算質量 を$\mu = \frac{m_{\rm A} m_{\rm B}}{M}$とする。

このとき,速度空間での積分は,$\int d \bm{v}_{\rm A} \int d \bm{v}_{\rm B} = \int d \bm{V} \int d \bm{u}$であり,衝突する2分子の運動エネルギーの和も重心運動と相対運動に分離される,$\frac{1}{2}(m_{\rm A}\bm{v}_{\rm A}^2 + m_{\rm B}\bm{v}_{\rm B}^2) = \frac{1}{2}( M\bm{V}^2 + \mu \bm{u}^2)$

そこで,単位体積・単位時間当たりの2種の分子の全衝突回数を,重心・相対座標で表すと,$z_{\rm AB} = \rho_{\rm A} \rho_{\rm B} \sigma_{\rm AB} \Bigl( \frac{m_{\rm A}}{2\pi k_B T} \cdot \frac{m_{\rm B}}{2\pi k_B T} \Bigr)^{3/2} \int d\bm{V} \int d\bm{u}  |\bm{u}| \exp (-\frac{M \bm{V}^2}{2 k_B T}) \exp (-\frac{\mu \bm{u}^2}{2 k_B T})  \\ = \rho_{\rm A} \rho_{\rm B} \sigma_{\rm AB} \Bigl( \frac{M}{2\pi k_B T}  \Bigr)^{3/2}  \int  d\bm{V} \exp (-\frac{\mu \bm{V}^2}{2 k_B T}) \cdot \Bigl( \frac{\mu}{2\pi k_B T}  \Bigr)^{3/2}  \int d\bm{u}  |\bm{u}|  \exp (-\frac{\mu \bm{u}^2}{2 k_B T})$ となる。

$\therefore z_{\rm AB} = \rho_{\rm A} \rho_{\rm B} \sigma_{\rm AB} \Bigl( \frac{\mu}{2\pi k_B T}  \Bigr)^{3/2} 4\pi \int_0^\infty u^3 \exp (-\frac{\mu \bm{u}^2}{2 k_B T}) du = \rho_{\rm A} \rho_{\rm B} \sigma_{\rm AB} \sqrt{\frac{8 k_B T}{\mu \pi}} $

そこで,ある1つのA分子がB分子と単位時間に衝突する回数は,$z_{\rm A(\rm B)}=n_{\rm B} \sigma_{AB} \sqrt{\dfrac{8 k_B T}{\pi \mu}}$

また,A分子=B分子として,ある1つのA分子が他のA分子と単位時間に衝突する回数は,換算質量が $\mu = m_{\rm A}/2$となって,$z_{\rm A}= \rho_{\rm A} \sigma_{AA} \sqrt{\dfrac{16 k_B T}{\pi m_{\rm A}}} = \rho_{\rm A} \sigma_{AA} \sqrt{2} \Bigl( \dfrac{2}{\sqrt{\pi}} \sqrt{\dfrac{2 k_B T}{m_{\rm A}}} \Bigr) = \rho_{\rm A} \sigma_{AA} \sqrt{2} \langle v_{\rm A} \rangle$

したがって,平均自由行程は$\lambda=\dfrac{\langle v_{\rm A} \rangle}{z_A} = \dfrac{1}{\sqrt{2} \rho_{\rm A} \sigma_{\rm AA}}$となり,$\sqrt{2}$が現れる。


2021年11月2日火曜日

錦秋文楽公演2021(2)

 錦秋文楽公演2021(1)からの続き

久しぶりに1日3部通して観劇の日(11:00-20:00)。10月31日が初日で,2日目の月曜日は平日なのでお客さんは少ない。二,三割くらいの入りだろうか。それにしては座席の割り振りがよろしくなく疎密のアンバランスが気になる。ウェブ上の予約システムを改修するだけの予算がないのだろう。

定年後は以前のように国立文楽劇場の定期公演をぜんぶ見るということは無くなったが,コロナのせいでさらに足が遠のいていた。今回は,まだ見ていない段のある蘆屋道満大内鑑ひらかな盛衰記の組み合わせが良かったので,早速予約したのだ。しかし,三分の一くらいは夢うつつだった。

第一部:「葛の葉子別れの段」の咲寿太夫は高音の発声で言葉もはっきりしていて聞きやすい。奥の竹澤宗助の三味線は丁寧な音がすごいなあ,安心して聞いていられる。道行の「蘭菊の乱れの段」は,狐の葛の葉が踊っているのだけれど,もう一つピンとこないのであった。これもできれば通しに近い構成で見たい。

第二部:ひらかな盛衰記の「逆櫓の段」は何度か見ているけれど,「大津宿屋の段」と「笹引きの段」から「松右衛門内の段」とつながることで,ようやく物語の意味とイメージがわかってきた。子どもの取り違えが起因する話だったのね。靖太夫は残念ながら声が出ていなかった。あるいはそうでなかったのかもしれないけれど,そのころは既にこちらが夢の中だった。一方,呂太夫は今日はよく声が出ていたし,清介の力強いバチ捌きとあいまって,感情表現がなかなか良かった。なお,睦太夫と清志郎も頑張っていたのではないでしょうか。

第三部:「辻法院の段」のようなチャリ場が藤太夫には似合う。さて,「神崎揚屋の段」は今回が初めてだった。千歳太夫と富助という安定したペアのおかげで,勘十郎の梅ヶ枝が苦悩するストーリーに没入することができたけれど,これは大変良かったですね。梶原源太の困ったちゃんの男性像との対比も今風で面白いし。そういえば,「神崎揚屋の段」は橋本治プロデュースの竹本駒之助のDVDを持っていたのだった。


写真:国立文楽劇場錦秋文楽公演2021のポスター



2021年11月1日月曜日

錦秋文楽公演2021(1)

   寝る前のNHK開票速報では,自民党過半数割れか?だったはずなのに,朝起きて11月になると,自民党安定多数,維新4倍に,立憲共産惨敗ということだった。野党共闘は1:1の選挙区では確かに効果を発揮したが,1:1:1の場合はそうではなかった。

維新的なムードは洗脳TVが支配する大阪や関西エリアだけではなく,全国にジワリと浸透している。おまけに国民民主と維新の合同会派話が持ち上がり,こうなると改憲勢力は自民261+公明32+維新41+国民11=345であり,楽々と2/3=315を超えているのだった(もちろん国民民主がなくてもだけれど)。こうなると,立憲民主からぼろぼろと崩れ落ちる層が出てくる。維新のような右翼ポピュリズムに対抗するには,れいわのような左翼ポピュリズムを持ってくるしかないのかも。

制度疲労による日本の没落を埋めるのが,一億総非正規化や,公共資産・サービスの民間・外資への切り売り,これが,改憲後に力をさらに増す差別的な右翼イデオロギーと戦争準備経済に支えながら進行するという目も当てらない状況が出現しそうだ。戦後蓄積してきた経済・文化資産はあっという間に消尽されていく。

金木犀香る晩秋の晴れの日,気落ちしながら,久々に維新政権の下でまだかろうじて開かれている文楽公演へと向かうのだった。街は賑わっており,横断歩道は剥げていなかったがペイントされた幅は狭くなっていたかもしれない。

2021年10月31日日曜日

平均自由行程(2)

 平均自由行程(1)からの続き

クラウジウスは,衝突する気体分子の速度は一定だが,相対速度の方向は一様に分布しているとして,平均自由行程の式を導いている。正確にはその速度分布まで含めた考察が必要になるが,とりあえず方向についての平均を考える。

平均自由行程は,分子の相対速度の大きさ$\langle u \rangle$を単位時間当たりの衝突回数$z$で割ったものであるが,相対速度($\bm{u}=\bm{v}-\bm{v}'$)の大きさの向きによる平均値は次のようになる。

$\langle u \rangle = \dfrac{2\pi \int_0^\pi \sqrt{v^2 + {v'}^2 - 2 v v' \cos \theta }\ sin\theta d\theta}{2\pi \int_0^\pi sin\theta d\theta} = \frac{1}{2} \int_{-1}^1 \sqrt{v^2 + {v'}^2 - 2 v v' t} \ dt $

$\therefore \langle u \rangle = \frac{1}{2} \frac{2}{3} \dfrac{1}{-2 v v'} \Bigl | (v^2+{v'}^2 -2 v v' t)^{3/2} \Bigr |_{-1}^1 = \dfrac{1}{6 v v'} \Bigl\{ |v+v'|^3 - |v-v'|^3 \Bigr\}$

ここで$v=v'$とすれば, $\langle u \rangle = \dfrac{4}{3} v $となり,クラウジウスの平均自由行程は,$\lambda = \dfrac{1}{\frac{4}{3} \rho \sigma }$


2021年10月30日土曜日

マクスウェル分布

平均自由行程の計算にはやはり気体分子速度のマクスウェル分布が必要かもしれない。これは,気体分子運動論でもボルツマン統計正準集団)の一般論からも求められる。ここでは前者についてまとめる。

ある領域内のN個の気体分子が速度 $\bm{v} \sim \bm{v} + d\bm{v}$にある確率を$P(\bm{v})$とし,それが速度分布関数$F(\bm{v})$によって,$P(\bm{v}) = F(\bm{v}) d\bm{v}$ で与えられるとする。このとき,$\int P(\bm{v}) d\bm{v} = 1$であり,物理量 $Q(\bm{v})$の期待値は,$\langle Q \rangle = \int  Q(\bm{v}) P(\bm{v}) d\bm{v} $となる。

ここで,速度の独立性と等方性を仮定すると,$F(\bm{v}) = f(v_x) f(v_y) f(v_z) = F(v^2)$ となる。すなわち,各成分の速度分布関数は共通の関数形の$f(v_i)$で与えられるとともに,$F(\bm{v})$は,速度ベクトルの二乗 $v^2=v_x^2+v_y^2+v_z^2$の関数となる。

先の式の両辺を$v_x$で微分すると,$F'(v^2) 2v_x = f'(v_x) f(v_y) f(v_z) = \dfrac{f'(v_x) }{f(v_x)} F(v^2)$となる。したがって,$\dfrac{F'(v^2) }{F(v^2)} = \dfrac{f'(v_x) }{2 v_x f(v_x)}=-\alpha$となる。最初の等式の両辺は異なった変数の関数なので,その値は定数でなければならず,それを$-\alpha$とおいた。

この微分方程式を解くと,$F(v^2)=A e^{-\alpha v^2},f(v_x)=A_x e^{-\alpha v_x^2}$となる。規格化のための積分をすると,$4\pi \int_0^\infty A e^{-\alpha v^2} v^2 dv = A\bigl( \dfrac{\pi}{\alpha}\bigr) ^{3/2} =1$となるので,$A=\bigl( \dfrac{\alpha}{\pi} \bigr) ^{3/2}$。したがって,$P(\bm{v}) = \bigl( \dfrac{\alpha}{\pi} \bigr) ^{3/2} e^{-\alpha v^2}$

気体分子の運動エネルギーの平均値が,$\int \dfrac{m v^2}{2} P(\bm{v}) d\bm{v} = \frac{3}{2}k_B T$となることから,$\dfrac{m}{2}\bigl( \dfrac{\alpha}{\pi} \bigr) ^{3/2}\dfrac{3}{2\alpha}\bigl( \dfrac{\pi}{\alpha} \bigr) ^{3/2} = \dfrac{3}{2}k_B T$。したがって,$\alpha = \dfrac{m}{2 k_B T}$であり,$F(v^2) = \Bigl( \dfrac{m}{2\pi k_B T} \Bigr) ^{3/2}  e^{-\frac{m v^2}{2 k_B T}} $

25℃1気圧の窒素気体の平均速度は$\langle v \rangle =\sqrt{\frac{8 k_B T}{\pi m}}= 475 {\rm m/s}$,平均自由行程は$9.3 \times 10^{-8} {\rm m}$である。

図:マクスウェル分布の概形


2021年10月29日金曜日

立体角

 平均自由行程を考えるために色々試行錯誤していたら,立体角の計算が必要になった。球の外側にある点から球を見込む立体角である。図のように,半径$a$の球の中心${\rm Q}$から,$\overline{\rm PQ}=\ell (>a)$の距離に点${\rm P}$をとる。

${\rm P}$から球を見込んだ時の球との接円が$x-y$平面にできるとする。接円と$y$軸の交点を${\rm A, B}$とすると,$\overline{\rm PA} = \overline{\rm PB} = \sqrt{\ell^2-a^2}$となる。

立体角$\Omega$は次の積分で与えられる。$\Omega = \int_0^{2\pi} \int_{\pi/2}^{\pi/2+\alpha} \sin\theta d\theta d\phi = 2\pi [-\cos \theta]_{\pi/2}^{\pi/2 + \alpha} = 2\pi \sin \alpha$ 。ただし,$ \alpha = \angle {\rm QPA}$であり,$\sin \alpha = \frac{a}{\ell}$。


図:球を見込む立体角

2021年10月28日木曜日

平均自由行程(1)

ラジオメーター(2)からの続き

平均自由行程の式は,$\lambda=\dfrac{1}{\sqrt{2} \rho \sigma}$とした,$\rho$は気体分子密度,$\sigma$は気体分子の衝突断面積である。で,$\sqrt{2}$がどこから出てきたのかは,簡単そうな難しそうな話だった。

固定された分子群に平均速度$v$の粒子が進んでいるとき,単位時間当たり,長さ直径$d$の円筒内の分子とは衝突することができる。静止している気体分子密度が$\rho$なので,単位時間当たりの衝突回数は,$n=\rho \pi d^2 v$である。そこで一回当たりに進む距離は,$\dfrac{v}{n}=\dfrac{1}{\rho \pi d^2} = \dfrac{1}{\rho \sigma}$となる。ただし,衝突断面積は $\sigma = \pi d^2$である。

簡単そうな話では次のようになっている。全ての粒子が動いている場合,衝突する2分子の速度ベクトルを$\bm{v}$と$\bm{v}'$とすると,相対速度ベクトルは,$\bm{u}=\bm{v}-\bm{v}'$となり,$u=|\bm{u}|$の平均値を先ほどの$v$に当てはめる必要がある。そこで,$\overline{\bm{u}^2}=\overline{\bm{v}^2}-2\overline{\bm{v}\cdot\bm{v}'}+\overline{\bm{v}'^2}$より,$u^2=v^2+v^2$となる。先ほどの$v$は$u=\sqrt{2} v$に置き換えられるから,$\sqrt{2}$があらわれる。ただし,速度ベクトルの相対的な向きはランダムであるとして,$\overline{\bm{v}\cdot\bm{v}'}$=0を用いた。

実のところはもう少し複雑な計算が必要らしいが,その前提として気体分子速度のマクスウェル・ボルツマン分布が必要なのかどうか。混合気体のマクスウェル・ボルツマン分布はどうなるかなど疑問が続く。

[1]衝突頻度と平均自由行程(山崎勝義)

2021年10月27日水曜日

ラジオメーター(2)

 ラジオメーター(1)からの続き

実験的な事実として,ラジオメーターの羽根車が一番よく回転するのは,1Paぐらいの圧力の場合であり,高真空では回転しない。これから,光の放射圧が原因ではないといえる。また,紫外線や白色LEDライトではあまり回転せず,熱を持つハロゲンランプや蝋燭ではよく回転する。さらに,ガラス面に接触した掌でもわずかに回転することやガラス面を冷却すると逆回転することから,赤外線の吸収や放出による残留気体の熱効果であることがわかる。

つまり,羽根車面の色の違いから生ずる温度勾配による内部の残留気体の運動が回転の原因ということになる。それでは,これを記述するのは流体力学の基礎方程式なのか,気体分子運動論の基礎方程式なのか。これを判定するのがクヌーセン数 $K_n$になる。

$K_n = \dfrac{\lambda}{L} = \dfrac{k_B T}{\sqrt{2} \pi d^2 P L}$

ここで,$\lambda$は平均自由行程,$k_B, T, P$はボルツマン定数及び気体の温度と圧力,$\pi d^2=\sigma$ は気体分子の断面積である。また,$L$は問題の系に対する代表的長さである。なお,$\dfrac{k_B T}{P}=\dfrac{V}{N}= \dfrac{1}{\rho}$であり,$\rho$は気体の数密度になる。これから,平均自由行程(速度 / 単位時間当たり衝突回数)は,$\lambda = \dfrac{1}{\sqrt{2} \rho \sigma}$とも表される。

気体の温度を300K,圧力を1Pa,系のサイズを0.1m,気体分子サイズ$d$=1 Å =$10^{-10}$mとして,$K_n=0.9$となる。$K_n$ <0.01 連続領域,0.01 < $K_n$ < 0.1 近連続領域,0.1 < $K_n$ < 10 遷移領域,10 < $K_n$ 自由分子領域 ということなので,これは流体力学よりも気体分子運動論的なボルツマン方程式で扱うのが適当なのではないか。


2021年10月26日火曜日

ラジオメーター(1)

 物理学科同期の同窓会関係の連絡をしていたら,楠本君からクルックス・ラジオメータについての質問があった。

真空に引いた(1 Torr程度)ガラス球の中に,羽根車が取り付けられており,4枚の羽根の片面が黒,他面が銀になっている。これに外部から光(赤外線)を当てると,熱の吸収の不均衡から温度勾配が生じる。それが残留空気の対流?を引き起こして,その反作用で羽根車が軸の周りに回転する。これにより,光の光度を調べることができるというのがラジオメータだ。現在では主に観賞用になっている。

羽根車の回転の原因として,光圧や面上の残留気体の分子運動による説明がされていたことがあったが,いずれも否定されているのか。柳田君からは,でんじろう先生のYouTubeを紹介された。色々な種類の光源による実験や,手作りラジオメータの実験はどは,非常に興味深いものだった。

ただ,まだ完全に理解できているわけではない。熱ほふく流,radiometric force,Knudsen force,エッジ効果と面効果,2Dシミュレーションの妥当性,などなど次々と芋づる式に疑問ワードが湧いて出てくるのであった。


写真:ラジオメーター(共立電子産業から引用)


2021年10月25日月曜日

光の雨:立松和平

 夜の谷を行く:桐野夏生からの続き

一年かかって,ようやく立松和平光の雨を読了。まとまった時間がないと本が読めないのだが,法事で金沢まで往復したサンダーバードの時間を使うことができた。

狂言回しの周辺ストーリーは本質的なものではないと思うので,そこを批判するのはあまり当たらないのではないか。ただ,勾留中の坂口弘死刑囚の著作からの盗作疑惑を指摘されたため,大幅に改訂して文庫本となっているとのこと。

物語の主人公は,玉井潔(坂口弘 1946.11-)である。彼が80歳になっていて,死刑制度が廃止された2026年という時点に時代設定がなされている(Wikipediaには2030年とあるが,玉井が80歳になったばかりで,55年前の事件というキーワードがあることから2026年と推定できる)。その思い出語りの形で,連合赤軍事件(真岡銃砲店襲撃事件印旛沼事件山岳ベース事件)を中心に事件の概要を肉付けしたストーリが描写されている。

前半を印旛沼事件までに費やしていたが,こちらはよく知らなかった。後半の山岳ベース事件は,朝刊に載った写真が生々しくショッキングだったことを憶えている。早岐やす子(21歳) ,向山茂徳(20歳);尾崎充男(22歳) ,進藤隆三郎(21歳) ,小嶋和子(22歳) ,加藤能敬(22歳) ,遠藤美枝子(25歳) ,行方正時(25歳) ,寺岡恒一(24歳) ,山崎順(21歳) ,山本順一(28歳) ,大槻節子(23歳) ,金子みちよ(24歳) ,山田孝(27歳) の14名を概ねカバーした記述がされていた。

立松和平の湿っぽさが内容にマッチしていたのかもしれないが,あらためて山本直樹のレッドをまとめて読んでみたくなる。


写真:光の雨の書影(Amazonから引用)

[1]連合赤軍事件スクラップブック


2021年10月24日日曜日

ルーシー

 木星の5つのトロヤ群小惑星を探査する宇宙探査機ルーシーが先週の土曜日(10月16日)にケープ・カナベラル宇宙軍基地から打ち上げられた。あれ,ケープ・カナベラルはケープ・ケネディに改名されていたのではなかったかと思ったが,どうなったのか。

ケネディ暗殺1週間後の1963年11月29日に,NASAの発射管制施設はケネディ宇宙センターに名称が変更されている。マーキュリー計画やジェミニ計画では,隣接するケープカナベラル空軍基地の発射施設が使われていたので,小学生の自分にはケープ・カナベラルは馴染みの名前だった。そのケープカナベラルもケープケネディという地名に変更されたと思っていたが,地名の方は1973年に元に戻されたようだ。知りませんでした。

フロリダ半島中部東岸のこの地域は,ジュール・ベルヌの「月世界旅行」の中で発射砲が設置されたフロリダ半島中部西岸のタンパに近かったので,アポロ計画のころにはちょっとした話題になっていた。

さて,ルーシーという名称は最初期のアウストラロピテクス人骨のルーシーからきているということだが,これはさらにビートルズのルーシー・イン・ザ・スカイ・ウィズ・ダイアモンズが由来ということで,なんだか巡り巡って複雑なことになっている。


写真:サージェント・ペパーズ・ロンリー・ハーツ・クラブ・バンド(Amazonから引用)



2021年10月23日土曜日

中性子の寿命パズル

原子核から飛び出した自由中性子の寿命は,宇宙初期の元素合成の話や標準模型におけるCMK行列の値などに関わる非常に重要な物理量である。実験的には,磁場や重力で閉じ込められた超冷中性子の数(ベータ崩壊している電子の数なのか?)を数えるボトル法と,飛行中の中性子が崩壊してできる陽子数を数えるビーム法に分けられる。

ところが,この2つの方法で得られる実験値は,ビーム法 が 888.0 ± 2.0 秒,ボトル法が 879.4 ± 0.6 秒であり,そ の差は 8.6 秒 (4σ) と大きな乖離がある。なお,ボトル法(超冷中性子)の最新のデータは,τn = 877.75 ± 0.28(stat.) + 0.22 / − 0.16(sys.) 秒であり,差は埋まっていない。

これに対して,KEKでは電子を計数する新しいビーム法の実験の準備がされている。また,全く独立な方法として,惑星/月探査機に積んだ表面組成分析用の中性子検出器を用いる方法が提案されている。精度は十分ではないが,水星や金星のフライバイのデータから,τn = 780 ± 60(stat.) ± 70(sys.) 秒を,月探査機のデータからτn = 800 +40/-50(stat.) ± 17(sys.) 秒が得られた。

なお,最新のLunar Prospectorのデータでは,τn = 887 ± 14(stat.) +7 / -4(sys.) 秒となっている。

図:今回の値は電子を測定するビーム法(京都大学のプレスリリースより)

[1]中性子寿命の謎の解明に向けて(KEK,2021.2.17)

2021年10月22日金曜日

原子の四重極能率

 原子核は,構成粒子間の力が面倒なテンソル力だったりする関係で,球形以外の回転楕円体などの形(フットボール型,パンケーキ型)が普通に見られるのだけれど,現代物理学の授業で「原子はみんな球形なのですか?」という質問があった。

原子は,原子核を中心としたクーロン力が支配的なので,どうなのか考えたこともなかった。もちろんE2遷移はあるけれど,基底状態で静的な四重極能率を持つ原子があるのだろうか。さっそく検索してみるのだけれど,なかなかこれといった情報にたどりつかない。分子はいいんですよ,ほとんど自明だから。

そもそも原子の基底状態で,全角運動量が 1 以上のものがあるのだろうか。たかだか100個しかないのだからどこかに簡単なテーブルが見つかるはずだ。あ,電子が奇数個であってその価電子が 0 でない(できれば2以上の)軌道角運動量を持てばばいいわけか。となると3d軌道や4d軌道に奇数個の電子があれば(Sc, V, Mn, Co, Y, Tc)J=3/2か5/2が作れそうなので,原子の電気四重極能率が 0 でない可能性がある。

周期表をあれこれみても電子配置はかいてあるものの,肝腎の全角運動量の情報がないのだ。どうなっているの?四重極能率の計算に全角運動量は関係ないのか?そんなこんなで少しだけかすっているような情報があったけれど,これは原子単体の話ではないかも。


図:電気四重極子の等ポテンシャル面(Wikipediaより引用)