2021年2月23日火曜日

流体抵抗力(3)

 流体抵抗力(2)からの続き

次に,速度の1次と2次に比例する流体抵抗力が働く時の球体(半径 $a$,質量 $m$)の鉛直方向の運動を解析的に解いてみる。運動方程式は次の形を仮定する。

\begin{equation*} m \dfrac{ d^2 x }{ d t^2} = - m g - m \gamma \dfrac{ d x }{ d t } \mp m \beta \, ( \dfrac{ d x }{ d t } )^2 \end{equation*}

鉛直上方を正とした$x$軸をとると,速度の2次の項の複号は負が上昇に,正が下降に対応する。両辺を$m$でわって,$ v = \dfrac{ d x }{ d t }$ とおくと次式を得る。

\begin{equation*} \dfrac{ d v }{ d t} = - g - \gamma v  \mp  \beta \, v^2 \end{equation*}

以下では自由落下の場合を考える。このときの終端速度は,$v_T =  ( \gamma - \sqrt{\gamma^2 + 4 \beta g} ) / 2 \beta  $ となり,$v_T \lt v \le 0$ が満たされる。ここで,$ u = v - \gamma / 2 \beta $ とおいて,微分方程式を変形すると,

\begin{equation*} \dfrac{ d u }{ d t} = \beta u ^2 - \dfrac{\gamma^2 + 4 \beta g}{4 \beta} = \beta (u - \alpha )^2  \end{equation*}

ただし,$ \alpha = \dfrac{\sqrt{\gamma^2 + 4 \beta g} }{2 \beta} $ としており,自由落下時には,$ - \alpha \lt u \le -\gamma / 2\beta $ が満たされる。したがって,両辺を時間で積分すると,

\begin{equation*} \int \dfrac{ d u }{ (\alpha - u) (u + \alpha)} = - \int \beta dt  \end{equation*}

\begin{equation*} \log \dfrac{  u + \alpha }{ \alpha - u } = - \beta t + C  \end{equation*}

\begin{equation*}  \dfrac{  u + \alpha }{ \alpha - u } = A e^{- \beta t} \end{equation*}

\begin{equation*} u = \alpha \dfrac{A e^{- \beta t} - 1 }{A e^{- \beta t} + 1} \end{equation*}

\begin{equation*} v = \dfrac{\gamma}{2\beta} + \alpha \dfrac{A e^{- \beta t} - 1 }{A e^{- \beta t} + 1} \end{equation*}

初期条件として,$ t=0 $ で $ v=0 $とすれば,$A=\dfrac{2 \alpha \beta - \gamma}{2 \alpha \beta + \gamma}$ である。

なお,空気中のピンポン玉では,$\gamma = 6 \pi \eta a / m = 2.51 \times 10^{-3} \, /{\rm s} $,$\beta = \frac{1}{2}  C_{\rm D} \rho \,\pi a^2 / m = 1.23 \times 10^{-1} / {\rm m}$,$\alpha = \dfrac{\sqrt{\gamma^2+4 \beta g }}{2 \beta} = 8.93 \, {\rm m / s}$,$\dfrac{\gamma}{2 \beta} = 1.02 \times 10^{-2} \, {\rm m / s}$ などとなる。


図 鉛直投げ上げの頂点付近での加速度変化(横軸は球体の速度)



0 件のコメント:

コメントを投稿