2024年10月10日木曜日

タンパク質設計・構造予測


かれこれ4年前にGoogleの英国子会社 DeepMindAlphaFold2が話題になっていた。そのテーマで今年のノーベル化学賞を受賞者が決まった。深層学習(AI)を用いたタンパク質設計や構造予測である。昨日のノーベル物理学賞(人工ニューラルネットワークの基礎理論)といい,なにやら景色ががらっと変わってみえた。物理学者や化学者が受賞しないのだから。今年だけかもしれないけれど。そのうち意識を持ったAGIASIがノーベル賞の受賞者になるのか。あるいは,将棋のようにAGIやASIにはかなわない人間だけの競技になってしまうのか。

Q(koshix):
2024年のノーベル化学賞を受賞した,David Bakerと,{Demis Hassabis,John M. Jumper}の2組3名の業績とその受賞理由について,周辺知識や2組の関係性も含めて,できるだけ分かりやすく解説してください。
 なお,付録として,2024年のノーベル物理学賞とノーベル化学賞の両方のテーマに共通する意義を議論してください。

A(Perplexity Pro):

2024年のノーベル化学賞は、タンパク質科学の革新的な進歩に貢献した3名の研究者に授与されました。

David Baker の業績
David Baker(ワシントン大学シアトル校教授)は、計算機によるタンパク質設計の先駆的研究で賞の半分を受賞しました。
・2003年に新しいタンパク質の設計に成功
・その後、様々な革新的なタンパク質を創造
・応用分野:医薬品、ワクチン、ナノ材料、微小センサーなど
Baker の業績は、特定の機能を持つ全く新しいタンパク質を設計・構築する能力を科学者に与えました3。これは、薬剤開発、ワクチン設計、合成生物学などの分野に大きな影響を与える可能性があります。

Demis Hassabis と John M. Jumper の業績
Demis Hassabis と John M. Jumper(共にGoogle DeepMind所属)は、タンパク質構造予測の革新的な進歩により、賞の残り半分を共同受賞しました12。
・AlphaFold2という人工知能モデルを開発
・アミノ酸配列からタンパク質構造を高精度に予測可能
・既知の約2億種類のタンパク質構造をほぼ全て予測
彼らの開発したAIモデルは、50年来の科学的課題を解決し、190カ国以上の200万人以上の研究者に利用されています34。これにより、タンパク質の生物学的役割や応用可能性の理解が大きく進展しました。

両者の関係性と意義
Baker のタンパク質設計技術と、Hassabis・Jumper のタンパク質構造予測技術は、相補的な関係にあります。前者は新しいタンパク質を創造し、後者はその構造を予測することで、タンパク質科学の可能性を大きく広げました1。
これらの発見は、理論科学を超えて、がんや遺伝性疾患を含む様々な病気の新しい治療法の開発につながる可能性があります1。

付録:2024年のノーベル物理学賞と化学賞の共通点
2024年のノーベル物理学賞は機械学習と人工ニューラルネットワークの基礎的発見に対して授与されました6。化学賞と物理学賞には、人工知能(AI)技術の科学研究への応用という共通点があります。

1.AIの科学への応用:物理学賞はAIの基礎技術に関するものですが、化学賞ではその応用例(タンパク質構造予測)が評価されています。
2.複雑な問題の解決:両分野とも、従来の方法では解決が困難だった複雑な問題にAIを活用しています。
3.学際的アプローチ:物理学、化学、情報科学の境界を越えた研究が評価されており、科学の学際的な発展を示しています。
4.実用的な影響:両分野の研究は、理論的な価値だけでなく、実際の応用(新薬開発、材料科学など)に大きな影響を与える可能性があります。

これらの共通点は、AIが現代科学の様々な分野で重要な役割を果たしていることを示しており、今後の科学研究の方向性を示唆しています。



図:ノーベル化学賞2024の解説から生成した絵画風イメージ(DALL-E3による)

0 件のコメント:

コメントを投稿