2024年3月4日月曜日

相対論的な速度の合成則

慣性系S $(ct,x,y,z)$ に対して,時刻 $t=t'=0$ で重なっている慣性系S' $(ct',x'y'z')$を考える。S'がSに対して$x$軸方向に速度$v$で等速直線運動している。このときガリレイ変換では,各座標成分は次式で結ばれる。
$\begin{cases} ct'= c t\\ x'= x - v t  \\ y'= y \\ z'= z \end{cases}$
ローレンツ変換では,$(ct')^2-x'^2-y'^2-z'^2 = (ct)^2-x^2-y^2-z^2$ となることから,
$\begin{cases} ct'= \gamma (c t - \beta x) \\ x'=\gamma (x - \beta ct)  \\ y'= y \\ z'= z \end{cases}$
である。ただし,$\beta = \dfrac{v}{c} , \ \ \gamma = \dfrac{1}{\sqrt{1-\beta^2}}$とする。

(1) 任意の方向のローレンツ変換

2つの慣性系に共通である座標系基本ベクトルを$\ (\bm{e}_x,\ \bm{e}_y,\ \bm{e}_z)\ $とすると,
それぞれの位置ベクトルは,$\bm{r}= x \bm{e}_x + y \bm{e}_y + z \bm{e}_z$と$\bm{r'}= x' \bm{e}_x + y' \bm{e}_y + z' \bm{e}_z$ で与えられる。そこで,ローレンツ変換の式をベクトルで表現すると次のようになる。
$\begin{cases} ct'= \gamma (c t - \beta \bm{e}_x\cdot\bm{r}) \\ \bm{e}_x \cdot \bm{r'} =\gamma ( \bm{e}_x \cdot \bm{r} - \beta ct) =\bm{e}_x \cdot \bm{r} + (\gamma-1)\bm{e}_x \cdot \bm{r}  - \gamma  \beta ct  \\ \bm{e}_y \cdot \bm{r'}=  \bm{e}_y \cdot \bm{r} \\ \bm{e}_z \cdot \bm{r'}=  \bm{e}_z \cdot \bm{r} \end{cases}$
空間成分の3式の各々に対応する成分の基本ベクトルを掛けて加えると次式となる。
$\begin{cases} ct'= \gamma (c t - \beta \bm{e}_x\cdot\bm{r}) \\ \bm{r'} = \bm{r}+(\gamma-1)\bm{e}_x \cdot \bm{r} \bm{e}_x- \gamma \beta ct  \bm{e}_x\end{cases}$
さらに,$ \beta \bm{e}_x = \bm{\beta}$として速度ベクトルを表現すると,$\bm{e}_x = \dfrac{\bm{\beta}}{\beta}$ であるから,
$\begin{cases} ct'= \gamma (c t - \bm{\beta} \cdot \bm{r}) \\ \bm{r'} = \bm{r}+\dfrac{\gamma-1}{\beta^2}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta} =  \bm{r}+\dfrac{\gamma^2}{\gamma + 1}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta}\end{cases}$

(2) ローレンツ変換における速度の合成則

S系とS'系とS"系を考える。S'系はS系に対して速度$\bm{v}$,S"系はS'系に対して速度
$\bm{u}$で運動している。$\bm{\beta}=\bm{v}/c,\ \gamma=1/\sqrt{1-\beta^2},\ \bm{\beta}'=\bm{u}/c,\ \gamma'=1/\sqrt{1-\beta'^2} $とする。

$\begin{cases} ct'= \gamma (c t - \bm{\beta} \cdot \bm{r}) \\ \bm{r'} = \bm{r}+\dfrac{\gamma-1}{\beta^2}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta} =  \bm{r}+\dfrac{\gamma^2}{\gamma + 1}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta}\end{cases}$
$\begin{cases} ct''= \gamma' (c t' - \bm{\beta'} \cdot \bm{r'}) \\ \bm{r''} = \bm{r'}+\dfrac{\gamma'-1}{\beta'^2}\bigl( \bm{\beta'} \cdot \bm{r'} \bigr) \bm{\beta'}- \gamma' ct'  \bm{\beta'} =  \bm{r'}+\dfrac{\gamma'^2}{\gamma' + 1}\bigl( \bm{\beta'} \cdot \bm{r'} \bigr) \bm{\beta'}- \gamma' ct'  \bm{\beta'}\end{cases}$
$ct''$に第1式と第2式を代入する。
$ct''= \gamma'  \gamma (c t - \bm{\beta} \cdot \bm{r})-\gamma' \bm{\beta'} \cdot \Bigl\{ \bm{r}+\dfrac{\gamma-1}{\beta^2}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta}\Bigr\}$
$\quad =  \gamma'  \gamma (1 + \bm{\beta'}\cdot\bm{\beta} ) ct -\gamma'(\gamma\bm{\beta}+\bm{\beta'})\cdot \bm{r} - \dfrac{\gamma'(\gamma-1)}{\beta^2}(\bm{\beta'}\cdot \bm{\beta}) \bm{\beta}\cdot \bm{r}$
$\quad \equiv \gamma'' (c t - \bm{\beta''} \cdot \bm{r})$
これから,
$\begin{cases} \gamma''  = \gamma'  \gamma (1 + \bm{\beta'}\cdot\bm{\beta}) \\ \gamma'' \bm{\beta''} =  \gamma'(\gamma\bm{\beta}+\bm{\beta'})+ \dfrac{\gamma'(\gamma-1)}{\beta^2}(\bm{\beta'}\cdot \bm{\beta}) \bm{\beta} \end{cases}$
$\therefore \bm{\beta''} = \dfrac{1}{\gamma (1 + \bm{\beta'}\cdot\bm{\beta})}\Bigl\{ \bm{\beta'} + \gamma \bm{\beta} +  \dfrac{(\gamma-1)}{\beta^2}(\bm{\beta'}\cdot \bm{\beta}) \bm{\beta}  \Bigr\}$
$ \bm{\beta''}$ が合成された速度ベクトルを光速$c$で割った量となる。

(3) 1次元の場合の速度の合成則

上の式のベクトルの一方向成分だけを取り出して扱うと,
$\displaystyle \dfrac{w}{c}= \dfrac{1}{\gamma \Bigl(1+\dfrac{u v}{ c^2}\Bigr)} \Bigl\{ \dfrac{u}{c} + \gamma \dfrac{v}{c} + (\gamma-1) \dfrac{u}{c} \Bigr\} = \dfrac{u + v}{c \Bigl( 1 + \dfrac{u v}{c^2} \Bigl)} $

0 件のコメント:

コメントを投稿