2023年10月31日火曜日

積分(1)

今日で10月も終わり。10月1日では遅すぎるもとっくに過ぎ去ってしまった。気分が滅入る日は,写経か積分に限るのが七十を過ぎた人の常である。

昨日の最後の積分はこんな形をしていた。$\displaystyle I = \int _{-\pi}^{\pi} \dfrac{R^2-a^2}{R^2+a^2-2 a R \cos\theta} d\theta$ ただし,$a>R$である。三角関数を含む積分は有理関数の積分に変換でき,有理関数の積分は必ず解ける。というのが,水野先生が担当していた教養の解析学の最も重要な教えの一つだった。

そのセオリーに従うと,まず,$t = \tan \dfrac{\theta}{2}$とおく。このとき,$d\theta = \dfrac{2 dt}{1+t^2}$,$\cos\theta = \cos^2 \dfrac{\theta}{2} - \sin^2 \dfrac{\theta}{2} = \dfrac{1-t^2}{1+t^2}$。今回は使わないけれど,なんならば,$\sin\theta = 2 \sin \dfrac{\theta}{2} \cos \dfrac{\theta}{2} = \dfrac{2 t}{1+t^2}$である。

これを代入すると,$\displaystyle I = \int_{-\infty}^{\infty} \dfrac{R^2-a^2}{R^2+a^2-2aR \dfrac{1-t^2}{1+t^2}}\dfrac{2 dt}{1+t^2} = \int_{-\infty}^{\infty} \dfrac{\gamma}{\alpha(1+t^2)-\beta (1-t^2)} dt$
ただし,$\alpha=R^2+a^2, \beta = 2aR, \gamma = 2(R^2-a^2)$ とおいた

したがって,$\displaystyle I = \int_{-\infty}^{\infty} \dfrac{\gamma}{(\alpha-\beta)+(\alpha + \beta) t^2} dt = \dfrac{\gamma}{\alpha -\beta}\int_{-\infty}^{\infty} \dfrac{1}{1+\frac{\alpha + \beta}{\alpha - \beta} t^2} dt $

$\displaystyle \int \dfrac{dx}{1+x^2} = \tan^{-1}x$であるから,$\displaystyle I = \dfrac{\gamma}{\alpha -\beta} \sqrt{\frac{\alpha - \beta}{\alpha + \beta}} \Biggl [ \tan^{-1} \sqrt{\frac{\alpha + \beta}{\alpha - \beta}}\ t \Biggr ]_{-\infty}^{\infty} = \dfrac{\gamma\pi}{\sqrt{\alpha^2-\beta^2}} = \dfrac{2\pi(R^2-a^2)}{|a^2-R^2|} = -2\pi $



0 件のコメント:

コメントを投稿