2023年10月15日日曜日

導体球(3)

導体球(2)からの続き

物理科学概説の授業で,表面に一様な電荷が分布する球殻内部の電場や電位の問題を説明しようとした。積分にまで踏み込めないが,立体角を使えばなんとか説明できる。ところでこれを真面目に積分計算しようとすると,電場中の導体球と同じ問題(面倒な楕円関数の積分が必要)が生ずることに今さらながら気がついた。

力学の重力ポテンシャルの場合も同じ問題があったはずで,これまでどうやって回避していたか思い出してみると,観測点の位置ベクトルの方向をz軸にとっている。これにより球対称性から簡単に積分ができていた。この方法が,一様電場中の導体球による表面電荷分布に対しても使えそうな気がしたので再挑戦してみる。

(1) 導体球の中心に置いた原点から観測点Pへの位置ベクトル$\bm{r}$の方向を$z$軸にとる。
そこで,$\bm{r} = (0,\ 0,\ r)$

(2) 一様電場ベクトル方向の導体球面上の位置ベクトル$\bm{e}$の$x-y$平面への射影を$x$軸にとる。このとき,$\bm{e}=(R \sin\lambda,\ 0,\  R \cos\lambda )$,ここで導体球の半径を$R$としている。

(3) 導体球面上の点Qへの位置ベクトルを,$\bm{r'}=(R \sin\theta' \cos\phi',\ R\sin\theta' \sin\phi',\ R\cos\theta')$とする。Qにある電荷要素は,$\rho(\bm{r'}) dS = \sigma R^2 \cos \omega \sin \theta' d\theta' d\phi'$である。ここで,$\sigma$は電荷面密度,$\cos\omega$は,$\bm{e}$と$\bm{r'}$のなす角度であり,$\cos\omega = \frac{\bm{e}\cdot\bm{r'}}{R^2} =  \sin \lambda \sin\theta' \cos\phi' + \cos \lambda \cos\theta' $である。

(4) 観測点Pと電荷要素点Qを結ぶ距離は,$|\bm{r} - \bm{r'}| = \sqrt{r^2+R^2-2rR \cos \theta'}$となる。

そこで,この電荷密度分布$\rho(\bm{r'})$がつくる静電ポテンシャル$V(\bm{r})$は次のようになる。
$\displaystyle V(\bm{r}) = \dfrac{\sigma R^2}{4\pi\varepsilon_0} \int \dfrac{(\sin \lambda \sin\theta' \cos\phi' + \cos \lambda \cos\theta' ) \sin \theta' d\theta' d\phi'}{ \sqrt{r^2+R^2-2rR \cos \theta'}}$

ここで,積分のうち,$\int_0^{2\pi} d \phi'$を実行すると,分子の$\cos\phi'$ を含む項はゼロになり,残りの項は$2\pi$倍となるので,
$\displaystyle V(\bm{r}) = \dfrac{2\pi \sigma R^2}{4\pi\varepsilon_0} \int \dfrac{( \cos \lambda \cos\theta' ) \sin \theta' d\theta'}{ \sqrt{r^2+R^2-2rR \cos \theta'}}$

さらに,$\alpha = r^2+R^2 $,$\beta = 2 r R\ $と置くと,$\sqrt{\alpha -\beta}=| r-R |,\ \sqrt{\alpha + \beta}= r + R\ $である。$t = \cos \theta'$と変数変換して,$ dt = -\sin \theta' d\theta' \ $ なので,
$\displaystyle V(\bm{r}) = \dfrac{\sigma R^2 \cos\lambda}{2 \varepsilon_0} \int_{-1}^1 \dfrac{t dt}{\sqrt{\alpha - \beta t }}$

この積分$I$は部分積分によって実行され,次のような結果を得る。
$\displaystyle I = \int_{-1}^1 \dfrac{t dt}{\sqrt{\alpha - \beta t}} = -\dfrac{4 \alpha}{3 \beta^2}\bigl(  \sqrt{\alpha -\beta} - \sqrt{\alpha + \beta} \bigr) -\dfrac{2}{3\beta} \bigl( \sqrt{\alpha - \beta} + \sqrt{\alpha + \beta}\bigr)$
すなわち,$\displaystyle I= \dfrac{2r}{3 R^2}\ (r<R),\quad I=\dfrac{2R}{3r^2}\ (r>R)$
最終的に,導体球の中の電位は線形になり,電場は一定になる。
$\displaystyle V(\bm{r}) = \dfrac{\sigma \cos\lambda}{3 \varepsilon_0} r  \quad (r<R)$

0 件のコメント:

コメントを投稿