2023年7月24日月曜日

最小二乗法(4)

最小二乗法(3)からの続き

$(a,\  b)$  に対する平均二乗誤差,$(\sigma_a^2,\ \sigma_b^2)$を考える。$(a,\  b)$ は直接測定された$(x, \ y)$の関数であるが,このうち$x_i$の誤差は非常に小さく,$y_i$の誤差だけが$n$個の独立変数として伝搬して$(a,\  b)$ に反映すると仮定する。ただし,各$y_i$自身の平均二乗誤差は共通でありこれを$\sigma_y^2$とおく。

誤差伝播の法則より,
$\displaystyle \sigma_a^2= \sum_{i=1}^n \Bigl( \frac{\partial a}{\partial y_i}\Bigr) ^2 \sigma_y^2 = \frac{\sigma_y^2}{n^2 \Delta^2} \sum_{i=1}^n  \Bigl( x_i-\overline{x} \Bigr) ^2 = \frac{\sigma_y^2}{n \Delta^2} \Bigl( \overline{x^2}-\overline{x}^2 \Bigr) = \frac{\sigma_y^2}{n \Delta} $

$\displaystyle \sigma_b^2= \sum_{i=1}^n \Bigl( \frac{\partial b}{\partial y_i}\Bigr) ^2 \sigma_y^2 = \frac{\sigma_y^2}{n^2 \Delta^2} \sum_{i=1}^n  \Bigl( \overline{x^2}-\overline{x}x_i \Bigr) ^2 = \frac{\sigma_y^2 \ \overline{x^2}}{n \Delta^2} \Bigl( \overline{x^2}-\overline{x}^2 \Bigr) = \frac{ \sigma_y^2 \ \overline{x^2}}{n \Delta}$

残るは,$\displaystyle \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n (\varepsilon_i)^2\  $を実験値から導くことになる。ここで,$ \varepsilon_i = y_i-(a_0 x_i + b_0)  = y_i - (a x_i + b) + (a x_i + b) -(a_0 x_i + b_0) = \delta_i + \tilde{\varepsilon_i}$ である。
ただし,$a_0 x_i + b_0$が未知の真値,$a x_i + b$が平均値に対応し,$ \delta_i$が残差, $\tilde{\varepsilon_i}$が平均値の誤差に相当する。

$\displaystyle \therefore \sigma_y^2 =\frac{1}{n}\sum_{i=i}^n \Bigl\{ \delta_i^2 + \tilde{\varepsilon_i}^2 \Bigr\}$ ここで,$\displaystyle \frac{2}{n} \sum_{i=1}^n \delta_i \tilde{\varepsilon}_i =0$ である。なぜならば$\tilde{\varepsilon}_i$は$x_i$の一次関数であり,正規方程式より, $\sum_{i=1}^n \delta_i = 0$ と $\sum_{i=1}^n \delta_i x_i=0$ が成り立つから。

そこで,$y(x_i)=a x_i+b$として,$\displaystyle \tilde{\sigma^2}_{y(x_i)} =  \frac{1}{n}\sum_{i=i}^n  \tilde{\varepsilon_i}^2 = \frac{1}{n}\sum_{i=i}^n  \Bigl\{ a x_i + b - a_0 x_i - b_0  \Bigr\}^2$を求めることになるが,ここで,$(a, b)$が $y_i$の関数として誤差伝搬の法則を再度使って,$\sigma_y^2$で表せばよい(と吉澤康和さんの「新しい誤差論(1989)」に書いてあった)。


0 件のコメント:

コメントを投稿