2022年10月26日水曜日

ドーナツ地球(2)

ドーナツ地球(1)からの続き

前回のモデル式をMathematicaで書くと次のようになる。地球の半径を$R \rightarrow r$としており,重力加速度の大きさは,${\rm [g]}=\dfrac{GM}{R^2}$を単位として得られたものになる。変数$t$が,重力の大きさを検討している大円上の角度になる。
v = Table[{2 r Cos[Pi/6 i], 2 r Sin[Pi/6 i], 0}, {i, 1, 12}];
d = Table[{2 r + r Cos[t], 0, r Sin[t]} - v[[i]], {i, 1, 12}];
n[w_] := w/Sqrt[w[[1]]^2 + w[[2]]^2 + w[[3]]^2]
m[i_] := (1 + Mod[i + 1, 2])/2
f = Sum[n[d[[i]]]*m[i], {i, 1, 12}];
g[t_] := f /. r -> 1.0
Plot[g[t], {t, 0, Pi}]
Plot[{Sqrt[g[t][[1]]^2 + g[t][[3]]^2], 
    180/Pi*ArcTan[g[t][[3]]/g[t][[1]]]}, {t, 0, Pi}];
vp = Table[{{Cos[t], Sin[t]}, {-g[t][[1]], -g[t][[3]]}}, 
    {t, 0., Pi, Pi/30}];
g1 = ListVectorPlot[vp, AspectRatio -> 0.5];
g2 = Graphics[{White, Disk[{0, -0.05}, 0.95, {0, Pi}]}];
Show[g1, g2] 

 


図1:重力加速度の方向依存性(大きさ,x成分,z成分 vs 大円上の角度 t )



図2:断面における重力加速度ベクトル場の様子(x = -2.0 がドーナツの中心)

ドーナツ地球の外側で8G,内側で2G(ただしドーナツの中心を向く)となった。ということは,断面図が円形の状態では安定な物質分布とならないわけか。

0 件のコメント:

コメントを投稿