2022年3月28日月曜日

ロフテッド軌道(3)

 ロフテッド軌道(2)からの続き

初速度を第1宇宙速度$v=\sqrt{\frac{GM}{R}}$に固定した場合,Mathematicaによるプロットを試みる。このとき,$u(\varphi)=A(\theta) \cos \varphi + B(\theta) \sin \varphi +\frac{GM}{h^2}$,$A(\theta)= - \frac{1}{R \tan^2 \theta }$,$B(\theta) = -\frac{1}{R \tan \theta}$,$\frac{GM}{h^2}=\frac{1}{R \sin^2 \theta}$ であり,Mathematicaのコードは以下のとおり。

In[1]:= {G, R, M} = {6.67*10^-11, 6.37*10^6, 5.97*10^24}
Out[1]= {6.67*10^-11, 6.37*10^6, 5.97*10^24}
In[2]:= {g, v} = {G M /R^2, Sqrt[G M/R]}
Out[2]= {9.81344, 7906.43}

In[3]:= A[t_] := 1/R*(1 - 1/Sin[t]^2)
In[4]:= B[t_] := -1/(R*Tan[t])
In[5]:= GM[t_] := 1/(R Sin[t]^2)
In[6]:= r[s_, t_] := 1/(A[t] Cos[s] + B[t] Sin[s] + GM[t])
In[7]:=
Table[f1[i] = Plot[{r[s, i]/R, 1}, {s, 0, Pi},
GridLines -> Automatic, PlotRange -> {0, 2.0}];, {i, 0.1, 1.5, 0.2}];
In[8]:= Show[Table[f1[i], {i, 0.1, 1.5, 0.2}]]
In[9]:=
Table[f2[i] = PolarPlot[{r[s, i]/R, 1}, {s, 0, Pi},
GridLines -> Automatic, PlotRange -> {0, 2.0}];, {i, 0.05, 1.5, 0.2}];
In[10]:= Show[Table[f2[i], {i, 0.05, 1.5, 0.2}]]

In[11]:= f[t_] :=
NIntegrate[ 1/Sqrt[G M R Sin[t]^2] *1/(A[t] Cos[s] + B[t] Sin[s] + GM[t])^2, {s, 0.001, Pi/30}]
In[12]:= Plot[f[t], {t, 0, Pi/8}]



図1:ロフテッド軌道(横軸$\varphi$ラジアン,縦軸$r/R$)


図2:ロフテッド軌道(上記と同じものを極座標表示)

この近似のもとでは,6500kmの高度に達する弾道ミサイルはほぼ地球を半周するところまで到達できるので,北朝鮮から米国本土全体が射程に入ることになる。鉛直上方から60度の角度で射出すれば,地球を1/4周するので1万kmまで到達できる。

実際には,空気抵抗があることや,初速度はロケットエンジンによる一定時間の加速によって獲得されることなどから,もう少し真面目な計算をする必要がある。

[1]ロケットの運動と人工衛星の打ち上げ(冨田信之)

0 件のコメント:

コメントを投稿