2022年2月16日水曜日

フリッシュ=パイエルスの覚書

ハイゼンベルグ原子炉からの続き

マンハッタン計画につながったのは,アインシュタイン=シラードの手紙ではなく,フリッシュ=パイエルスの覚書だったということで,その前半をDeepLを使いながら訳してみた。後半は,ウラン235の臨界質量を計算するための物理的なパートである。

オットー・ロベルト・フリッシュ(1904-1979)は叔母のリーゼ・マイトナー(1878-1968)とともに,オットー・ハーン(1879-1968)と学生のフリッツ・シュトラウスマン(1902-1980)のウランへの中性子線照射実験が意味するところを初めて理論的に明らかにし,「核分裂」という言葉を作った科学者である。フリッシュはナチスドイツをのがれて,バーミンガムのルドルフ・パイエルス(1907-1995)のところに身を寄せていた。

原文を読んでみると,ウランの臨界量を除いて非常に正確で重要な内容が,要点をはずさずに簡潔にまとめられていることに驚く。フリッシュやパイエルスはその後,マンハッタン計画に加わり,ウランの正確な臨界量を導くことに成功している。

ウランの核連鎖反応に基づく「超爆弾」の建設について

添付の詳細報告書は,原子核に蓄積されたエネルギーが爆発力の源となる「超爆弾」建設の可能性について述べたものである。この超大型爆弾の爆発で放出されるエネルギーは,1,000トンのダイナマイトの爆発によるエネルギーとほぼ同じである。このエネルギーは小さな体積の中で解放され,その中で一瞬,太陽の内部に匹敵する温度を発生させる。このような爆発の爆風は,広範囲に渡って生物を死滅させることになる。その規模を見積もるのは難しいが,おそらく大都市の中心部をカバーするだろう。

さらに,爆弾が放出するエネルギーの一部は放射性物質の生成に使われ,これらは非常に強力で危険な放射線を放出する。この放射線の影響は爆発直後が最も大きいが,徐々に減衰し,爆発後数日間は被災地に立ち入った人は死亡する。

この放射能の一部は風に乗って運ばれ,汚染を広げ,風下数キロのところで人が死ぬこともある。

このような爆弾を製造するためには,相当量のウランを処理して,天然ウランに約0.7%含まれる軽い同位体(U235)を分離させる必要がある。このような同位体を分離する方法は,最近開発された。しかし,この方法は時間がかかり,化学的性質が技術的な困難をもたらすウランにはこれまで適用されてこなかった。しかし,これらの困難は決して乗り越えられないものではない。大規模な化学プラントの経験が十分でないため,コストについて信頼できる見積もりはできないが,法外なコストでないことは確かである。

これらの超爆弾には,約1ポンド(450g)という「臨界サイズ」が存在するという性質がある。分離したウランの同位体がこの臨界量を超えると爆発するが,臨界量以下であれば絶対に安全である。したがって,爆弾は2つ(またはそれ以上)の部分に分けて製造され,それぞれが臨界サイズより小さく,輸送時にはこれらの部品が互いに数インチ(10cm〜)の距離を保っていれば,早すぎる爆発の危険はすべて回避されるであろう。爆弾には,爆発させようとするときに2つの部品を一緒にする機構が備えられているはずである。部品が結合して臨界量を超えるブロックを形成すると,大気中に常に存在する透過放射線の効果で,1秒かそこらで爆発が開始される。

爆弾の部品を結合させる機構は,臨界条件に達したばかりの時に爆発する可能性があるため,かなり速く作動するように手配しなければならない。この場合,爆発の威力ははるかに弱くなる。これを完全に排除することは不可能だが,このような方法で失敗する爆弾は,例えば100個のうち1個だけであることを容易に確認することができるし,いずれの場合でも爆発は爆弾そのものを破壊するのに十分強力なので,この点は重大ではない。

このような爆弾の戦略的価値について論じる能力はないと思われるが,次の結論は確かなようである。

1 兵器としての超爆弾は,事実上,これを防ぐことができない。爆発の力に対抗できるような材料や構造物はないだろう。もし,この爆弾を要塞(ようさい)線を突破するために使おうと考えるなら,放射性物質のために数日間,誰もその地域に近づくことができず,防御側がその地域を再占領することもできないことを心に留めておく必要がある。いつなら安全に再突入できるかを最も正確に判断できる側が有利となる。これは,爆弾の位置を事前に知っている攻撃側となる可能性が高い。

2 放射性物質が風に乗って拡散するため,多数の民間人を犠牲にすることなく爆弾を使用することは不可能であろう。つまり自国内で使うには適していないのだ。(海軍基地付近での深海爆雷としての使用も考えられるが,その場合でも爆破による大浸水と放射性物質による市民生活の大きな損失が予想される)。

3 同じアイディアを他の科学者も持っているという情報はないが,この問題に関係する理論的データはすべて発表されているので,ドイツが実際にこの兵器を開発していることは十分に考えられる。同位体を分離するためのプラントは,人目を引くような大きさである必要はないので,これが事実かどうかを見極めるのは難しい。この点で参考になるのは,ドイツの支配下にあるウラン鉱山(主にチェコスロバキア)の開発状況や,ドイツが最近海外で購入したウランに関するデータだろう。同位体を分離する最良の方法を発明したK・クルシウス博士(ミュンヘン大学物理化学教授)が工場を管理している可能性が高いので,彼の居場所や状況も重要な手がかりになるかもしれない。

一方,ウラン同位体の分離が超大型爆弾の製造を可能にすることに,ドイツではまだ誰も気づいていない可能性もある。この報告を極秘にすることは極めて重要である。なぜならば,ウランの分離と超大型爆弾の関係を噂されると,ドイツの科学者が正しい考えを持つようになるかもしれないからである。

4 ドイツがこの兵器を所有している,あるいは将来所有することになるという前提で考えるならば,有効で大規模に使用できるシェルターが存在しないことに気づかなければならない。最も効果的な応戦方法は,同様の爆弾による反撃であろう。したがって,たとえこの爆弾を攻撃手段として使用するつもりがないとしても,できるだけ早く,できるだけ迅速に生産を開始することが重要であると思われる。必要な量のウランを分離するのは,最も好ましい状況でも数ヶ月の問題であるから,そのような爆弾がドイツの手にあることが分かってから生産を開始するのでは明らかに遅すぎるし,したがって,この問題は非常に緊急であると思われる。

5 予防措置として,このような爆弾の放射性影響に対処するために,探知部隊を用意することが重要である。危険地帯に測定器を持って近づき,危険の程度と予想される期間を判断し,人々が危険地帯に入るのを阻止するのがその任務である。というのも,放射線は非常に強い場合は即死するが,弱い場合は遅発性であるため,危険地帯の端にいる人は手遅れになるまで警告を受けることができないからである。

探知部隊は,自分自身を守るために,危険な放射線を吸収する鉛板で装甲した自動車や飛行機で危険地帯に入る必要がある。機内は密閉され,汚染された空気を避けるために,酸素はボンベで運ばなければならない。

また,探知員は,人間が短時間に浴びても安全な最大線量を正確に把握していなければならない。この安全限界は現在のところ十分な精度でわかっておらず,この目的のための生物学的研究が早急に必要である。

上記の結論の信頼性については,まだ誰も超爆弾を作ったことがないので,直接の実験に基づくものではないといえるが,最近の核物理学の研究により,非常にしっかりと確立された事実に基づいていることがほとんどである。唯一の不確定要素は,原爆の臨界サイズに関するものである。私たちは,臨界サイズはおよそ1ポンドかそこらだと確信しているが,この推定には,まだ確証の得られていないある理論的な考え方に頼らざるを得ない。もし臨界サイズが私たちが考えているよりかなり大きければ,爆弾の製造方法に関する技術的な困難はさらに増すことになる。この問題は,少量のウランを分離した時点で明確に解決することができ,問題の重要性に鑑み,少なくともこの段階に到達するために直ちに措置を講じるべきだと考えている。


写真:バーミンガム大学の記念碑(Wikipediaより引用)

[1]The Frisch-Peierls Memorandum (Stanford University)

[2]Report by the M. A. U. D.  Committee on the use of the Uranium for a Bomb

0 件のコメント:

コメントを投稿