2022年1月8日土曜日

三項間漸化式

鈴木貫太郎のチャンネルで, $p = a+\dfrac{1}{a}\ $が与えられたときに,$a^6+\dfrac{1}{a^6}\ $を求める問題があった。これを一般化して,$b_n \equiv a^n+\dfrac{1}{a^n}\ $を求める問題を考えた。

ここで,$b_{n+1}=p\ b_n- b_{n-1}$ が成り立つ。これは三項間漸化式なので,このあたりに一般解法がある。漸化式の特性方程式 $x^2 - p\ x + 1 = 0$の解を$\alpha=\frac{p + \sqrt{p^2-4}}{2},  \beta=\frac{p - \sqrt{p^2-4}}{2}$とする。このとき,$b_n = A \alpha^n + B \beta^n \ $で一般解が与えられることにより,$b_0=2, b_1=p\ $の初期条件から$A, B$を決定すると $A=B=1$となる。

つまり,$b_n = \Bigl( \frac{p + \sqrt{p^2-4}}{2} \Bigr)^n +  \Bigl(  \frac{p + \sqrt{p^2-4}}{2} \Bigr)^n$ となる。例えば,$b_{10} = -2 + 25 p^2 - 50 p^4 + 35 p^6 - 10 p^8 + p^{10}$ だ。

これをMathematicaでプロットしたら,こんな感じのグラフが出てきた。ただし,$a$が実数ならば,$| p | \ge 2$ なのだ。


図:Plot[b[10], {p, -2.4, 2.4}]のグラフ

0 件のコメント:

コメントを投稿