2021年11月5日金曜日

ボルツマン分布

図:ボルツマン分布のイメージ

$N$個の粒子系の全エネルギーを$E$とする。$i$番目の箱には,$g_i$個の区別できる状態があり,1粒子エネルギー$u_i$を持つ$n_i$個の粒子がこれらの状態に配置されている。ただし,$i=(1,...,M)$とする。各粒子は区別できるとして,$g_i$個の状態には粒子がいくつでも入ることができる。このエネルギー分配の場合の数$W$($W$自身は非常に大きな数なので,その対数$\log W$で考える)が最大になるのはどのような粒子配置$\{ n_i / g_i \}$のときかという問題を考える。この条件を式で表すと,

$\displaystyle \delta \log W = \sum_{i=1}^M \frac{\partial \log W}{\partial n_i} \delta n_i = 0, \ \  \sum_{i=1}^M n_i = N\  (\sum_{i=1}^M \delta n_i = 0), \ \  \sum_{i=1}^M u_i n_i=E\ (\sum_{i=1}^M u_i \delta n_i = 0)$

1番目の箱に$N$個の粒子から取り出した$n_1$個の粒子を入れて,$g_1$個の状態に配置する場合の数は,$W_1=C_{n_1}^N g_1^{n_1}$である。続いて,2番目の箱に残りの$N-n_1$個の粒子から取り出した$n_2$個の粒子を入れて,$g_2$個の状態に配置する場合の数は,$W_2=C_{n_2}^{N-n_1} g_2^{n_2}$となる。従って,$i$番目の箱$g_i$に$n_i$個の粒子を入れて配置する場合の数は,$W_i=C_{n_i}^{N-\sum_{k=1}^{i-1}n_k} g_i^{n_i}$となる。これを続けると,最終的な場合の数は,各箱の場合の数$W_i$の積で,$W=\prod_{i=1}^M W_i = \dfrac{N!g_1^{n_1} g_2^{n_2} \cdots g_M^{n_M}}{n_1! n_2! \cdots n_M!}$となる。

自然数$n$の階乗$n!$の対数$\log n!$についてのスターリングの公式は,$n!=n \log n -n \ (n \gg 1)$であるから,これを用いて $\log W$を表すと,$\log W = N \log N - N +\sum_{i=1}^M (n_i \log g_i - n_i \log n_i - n_i )$。そこで,$\delta \log n_i = \frac{1}{n_i} \delta n_i$を用いると,$\delta \log W = \sum_{i=1}^M (\log g_i - \log n_i)\ \delta n_i$となる。

ところで,$n_i$は独立ではなくて制約条件がついている。これを簡単に処理するためにラグランジュの未定乗数法を用いれば,$n_i$を独立変数のように扱うことができる。$\alpha$と$\beta$を,それぞれ粒子数一定,エネルギー一定の制約条件に対応する2つの未定乗数として,

$\delta \{ \log W + \alpha (N-\sum_{i=1}^M n_i) + \beta (E-\sum_{i=1}^M u_i n_i) \}=0$, $\sum_{i=1}^M (\log g_i -\log n_i - \alpha - \beta u_i) \delta n_i = 0$。$\delta n_i$は独立にとってよいので,$\log g_i-\log n_i - \alpha - \beta u_i=0$であり,$n_i = g_i e^{-\alpha} e^{-\beta u_i}$となる。

ここで,状態の占有率$f_i$は,$f_i=\frac{n_i}{g_i}=\frac{1}{e^{\alpha + \beta u_i}}$となる。この$\alpha,\ \beta$は,統計力学的なエントロピーと熱力学的なエントロピーの関係式から定まる。すなわち,$S=k_B \log W, dS = k_B\ d\log W = k_B \sum_{i=1}^M \log \frac{g_i}{n_i} d n_i = k_B  \sum_{i=1}^M (\alpha + \beta u_i) d n_i$

$\therefore dS= k_B (\alpha dN + \beta dU) = -\mu \frac{dN}{T} + \frac{dU}{T}$から,$\alpha = -\frac{\mu}{k_B T},\ \beta = \frac{1}{k_B T}$であり,$f_i = e^{-\frac{u_i - \mu}{k_B T}}$となる。

0 件のコメント:

コメントを投稿