2019年12月25日水曜日

浮力の問題(7)

浮力の問題(6)に続いて,もうひとつ別のモデルを考えてみる。

板倉さんや夏目さんの実験などでは乾いた容器に密度が水より小さな物体を押し付けた状態でまわりに流体をそそぎ,その後,手を離しても浮上しない状態が維持される。これに松川さんが噛みついた訳だった。単純な表面張力で説明できるかというと,浮力の問題(4)で示したように効果が小さすぎるように思える。そこで薄い空気層があるために浮上を妨げるということがありうるか考えてみる。

場面設定
場面設定1の環境において,質量$m$,底面積$A$,高さ$d$の直方体Cを用意する。$H$は大気圧$P_{\rm A}$と等価な水柱の高さである。水を入れない状態の水底Bに物体Cを押さえつけ,ここから水を$h$まで満たすと物体の底面と水底Bの間に厚さ$b$の空気層が残ったとする。

初期状態では空気層の厚さは$b=b_i \ll d$であり,その面積は物体の底面積$A$と一致している。このときの張力は$T_i=0$である。空気層の気圧の初期値$P_i$は水底の水圧$P_{\rm B}$と等しいとする。

次に張力$T$で物体を持ち上げると空気層の部分に徐々に水が浸入すると同時に空気層の
厚みは増加し,$T=T_f$で最終的に離床するときの厚さは$b=b_0 \ll d$となったとする。


図 水中の物体に働く圧力と力(その2)

①:薄い空気層が存在するモデル

水の浸入する割合 $f(P)$ が,水中の空気層の圧力$P$に比例するというモデルを考える。初期状態では,$f(P_i)=f_i=0$であり水は浸入しない。圧力が減るとともに浸入の割合は線型に増加し,離床時は $f(P_f)=f_0$となるとして,次式を仮定する。
\begin{equation}
f(P) = \dfrac{P-P_i}{P_f-P_i}f_0
\end{equation}
空気層の厚さは物体の高さにくらべて十分に小さいと近似する。すなわち物体が空気層をはさんで着底してから張力$T$を加えて持ち上げる過程で,物体の上面の水圧$P_C$や物体の下面の水圧$P_B$はそれぞれ,有効水深$H+h-d$や$H+h$の水圧のままであるとする。このとき水圧の式は次のようになる。
\begin{equation}
\begin{aligned}
P_{\rm A} &= \rho g H\\
P_{\rm C} &= \rho g (H+h-d)\\
P_{\rm B} &= \rho g (H+d)\\
P_i &= P_C + m g /A\\
P_f &= \dfrac{b_i}{b_0 (1-f_0)}\ P_i = \beta / \bar{f} \cdot P_i
\end{aligned}
\end{equation}
ただし,$b_i/b_0=\beta,\ \bar{f}=1-f_0$とした。

初期状態では次の力の釣り合いの式が成り立っている。
\begin{equation}
T_i = m g + P_{\rm C} A - P_i A = 0
\end{equation}
離床状態では次の力の釣り合いの式が成り立っている。
\begin{equation}
\begin{aligned}
T_f &= m g + P_{\rm C} A - P_B A f_0 - P_f A (1-f_0)\\
 &= m g + \rho g (H+h-d) A - \rho g (H+h) A f_0 \\
 &- \Bigl\{ m g + \rho g (H+h-d) A \Bigr\}\beta
\end{aligned}
\end{equation}

両辺を$\rho g d A = m_0 g$で割り,$t_f = T_f/ m_0 g$と置くと,
\begin{equation}
\begin{aligned}
t_f &= \dfrac{\rho_m}{\rho} -1 + \dfrac{H+h}{d}\bar{f}
-\Bigl( \dfrac{\rho_m}{\rho} -1 + \dfrac{H+h}{d} \Bigr) \beta \\
&=  \Bigl(\dfrac{\rho_m}{\rho} -1 \Bigr) (1-\beta)+
\dfrac{H+h}{d}(\bar{f} - \beta)
\end{aligned}
\end{equation}

②:数値的な評価の例
物体Cを密度$\rho_m = 0.5$で一辺が10cm の立方体とする。立方体の質量は 500 g である。
大気圧に等価な水の深さは$H$=1000cmであり,水深を$d$=100cmとする。$m_0 g$ = 1 kgwなので,次の式の単位はkgwである。離床時張力$t_f$は,空気層の体積拡大率の逆数$\beta$と浸水していない部分の比率$\bar{f}$の関数$t_f(\bar{f},\beta)$として表される。
ただし,$0 < \bar{f},\ \beta < 1$ である。

(1) $f_0=0\ (\bar{f}=1)$,離床時の浸水がない場合
\begin{equation}
\begin{aligned}
t_f(1, \beta) = -0.5 ( 1 - \beta) + 110 (1-\beta)\\
0 < \beta < 1 \quad \to \quad 109.5 > t_f > 0
\end{aligned}
\end{equation}
(2) $f_0=0.5\ (\bar{f}=0.5)$,離床時に50%は浸水している場合
\begin{equation}
\begin{aligned}
t_f(0.5, \beta) = -0.5 ( 1 - \beta) + 110 (0.5-\beta)\\
0 < \beta < 0.4977 \quad \to \quad 54.5 > t_f > 0
\end{aligned}
\end{equation}
(3) $f_0=0.9\ (\bar{f}=0.1)$,離床時に90%は浸水している場合
\begin{equation}
\begin{aligned}
t_f(0.1, \beta) = -0.5 ( 1 - \beta) + 110 (0.1-\beta)\\
0 < \beta < 0.0959 \quad \to \quad 10.5 > t_f > 0
\end{aligned}
\end{equation}


0 件のコメント:

コメントを投稿