2019年11月30日土曜日

楕円軌道と内心の軌跡

楕円の軌跡は焦点からの線分の長さの和が一定という条件で描くことができる。楕円の長半径を$a$,短半径を$b$,焦点の座標を${\rm O}_1=(-c,0)$,${\rm O}_2=(c,0)$,楕円上の点Pの座標を$(x,y)$とする。例えば,$\ell_1={\rm O}_1{\rm P}$,$\ell_2={\rm O}_2{\rm P}$として,$\ell_1+\ell_2=2 a$と一定となる。

このとき,三角形${\rm O}_1{\rm O}_2 P$の内心(内接円の中心)Qの軌跡はどんな図形を描くだろうか。twitterでアニメーションをみかけたが,楕円に見えたので確かめてみよう。点Pは次の楕円の方程式の上を動く。
\begin{equation}
\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 \quad a^2=b^2+c^2
\end{equation}
このとき,$\ell_1, \ell_2$を求めてみる。
\begin{equation}
\begin{aligned}
\ell_1 &= \sqrt{ (x+c)^2 + y^2 } = \sqrt{(x+c)^2 + b^2 (1 - (x/a)^2 ) }\\
&= \sqrt{(x+c)^2 + (1-c^2/a^2) (a^2 - x^2) } = a + \dfrac{c x}{a}\\
\ell_2 &= \sqrt{ (x-c)^2 + y^2 } = \sqrt{(x-c)^2 + b^2 (1 - (x/a)^2 ) } \\
&= \sqrt{(x-c)^2 + (1-c^2/a^2) (a^2 - x^2) } = a - \dfrac{c x}{a}
\end{aligned}
\end{equation}
次に,内心Qの座標を,$(p,q)$とする。$q$は内接円の半径と等しい。三角形の内接円の半径$r$は,三角形の面積$S$と$2S=(\ell_1+\ell_2+2c) r$の関係がある。ヘロンの公式より,
\begin{equation}
\begin{aligned}
s &= (\ell_1+\ell_2+2c)/2 = a+c \\
S &=\sqrt{s(s-2c)(s-\ell_1)(s-\ell_2)}=\sqrt{(a+c)(a-c)(c - c x/a)(c + c x/a)}\\
\therefore q &= r= \dfrac{S}{a+c}=c\sqrt{\frac{a-c}{a+c}(1-x^2/a^2)}= \dfrac{c y}{b}\sqrt{\frac{a-c}{a+c}}\equiv  \dfrac{c\ y\ \varepsilon}{b}
\end{aligned}
\end{equation}
また,角${\rm PO_1 O_2}=\phi$,角${\rm PO_2 O_1}=\theta$とすると,余弦定理から,
\begin{equation}
\begin{aligned}
\cos\phi = \dfrac{\ell_1^2+(2c)^2-\ell_2^2}{4\ell_1 c}=\dfrac{x+c}{\ell_1}\\
\cos\theta = \dfrac{\ell_2^2+(2c)^2-\ell_1^2}{4\ell_1 c}=\dfrac{c-x}{\ell_2}
\end{aligned}
\end{equation}
内心の性質から,角${\rm QO_1 O_2}=\phi/2$,角${\rm QO_2 O_1}=\theta/2$であり,半角の公式から,
\begin{equation}
\begin{aligned}
\tan{\frac{\phi}{2}} &=\sqrt{\dfrac{1-\cos\phi}{1+\cos\phi}} =\sqrt{\dfrac{\ell_1-(x+c)}{\ell_1+(x+c)} }\\
&=\sqrt{\dfrac{a+cx/a-(x+c)}{a+cx/a+(x+c)}} = \varepsilon \sqrt{\dfrac{a-x}{a+x}}\\
\tan{\frac{\theta}{2}} &=\sqrt{\dfrac{1-\cos\theta}{1+\cos\theta}}=\sqrt{\dfrac{\ell_2-(c-x)}{\ell_2+(c-x)} }\\
&=\sqrt{\dfrac{a-cx/a-(c-x)}{a-cx/a+(c-x)}} = \varepsilon \sqrt{\dfrac{a+x}{a-x}}\\
\end{aligned}
\end{equation}
${\rm O_1}$から角度$\phi/2$で望む内心Qのy座標が,${\rm O_2}$から角度$\theta/2$で望むものと等しいことから,
\begin{equation}
\begin{aligned}
(p+c) \tan \dfrac{\phi}{2} &= (c-p) \tan \dfrac{\theta}{2} \\
p \bigl( \tan \dfrac{\phi}{2} +  \tan \dfrac{\theta}{2} \bigr) &= c \bigl(  \tan \dfrac{\theta}{2} - \tan \dfrac{\phi}{2} \bigr) \\
p \varepsilon \Bigl( \sqrt{\dfrac{a-x}{a+x}} + \sqrt{\dfrac{a+x}{a-x}} \Bigr)
& = c \varepsilon  \Bigl( \sqrt{\dfrac{a+x}{a-x}} - \sqrt{\frac{a-x}{a+x}} \Bigr) \\
2 a p \varepsilon &= 2 x c \varepsilon\\
\therefore p &= \dfrac{c}{a} x
\end{aligned}
\end{equation}
これから,内心Qの満足する軌跡の方程式は,Pが描く楕円の軌跡の式を用いて以下のように求まった。
\begin{equation}
\dfrac{p^2}{c^2} + \dfrac{q^2}{(c \varepsilon)^2} = 1
\end{equation}

図 楕円の軌跡(青)と内心の軌跡(赤)


0 件のコメント:

コメントを投稿