2024年1月21日日曜日

双曲線関数

都道府県の長さからの続き

一様分布の確率密度関数で正方形の内部のランダムな2点の平均距離を求める際に,面倒な積分が必要になる。このとき双曲線関数への変数変換を行うのだが,久しぶりに使うと勘が鈍っていてなかなか計算が進まない。ので,復習する。

$\sinh x = \dfrac{e^x - e^{-x}}{2},\ \  \cosh x = \dfrac{e^x + e^{-x}}{2},\ \  \tanh x = \dfrac{\sinh x}{\cosh x} = \dfrac{e^x - e^{-x}}{e^x + e^{-x}}$
$\cosh^2 x - \sinh^2 x = 1, \ \ \tanh^2 x = 1 - \dfrac{1}{\cosh^2 x},\ \ \dfrac{1}{\tanh^2 x} = 1 +  \dfrac{1}{\sinh^2 x}$
$\frac{d}{dx}\sinh x = \cosh x,\ \ \frac{d}{dx}\cosh x = \sinh x, \ \  \frac{d}{dx} \tanh x = \dfrac{1}{\cosh^2 x}$
$\int \sinh x \ dx= \cosh x,\ \ \int \cosh x \ dx = \sinh x, \ \  \int \tanh x\ dx = \log( \cosh x)$


$\sinh ( x \pm y )= \sinh x \cosh y \pm \cosh x \sinh y$
$\cosh ( x \pm y )= \cosh x \cosh y \pm \sinh x \sinh y$
$\tanh ( x \pm y )= \dfrac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$

$\sinh 2x  = 2 \sinh x \cosh x = 2 \sinh x \sqrt{1 + \sinh^2 x}$
$\cosh 2x = 2 \cosh^2 x - 1 = 2 \sinh^2 x + 1$

$\sinh 3x  = \sinh^3 x + 3 \sinh x \cosh^2 x$
$\cosh 3x = \cosh^3 x + 3 \cosh x \sinh^2 x$

$\sinh 4x  = 4 \sinh^3 x \cosh x + 4 \sinh x \cosh^3 x$
$\cosh 4x =  \sinh^4 x + 6  \sinh^2 x +\cosh^2 x + \cosh^4 x$

$\sinh^{-1}x = \log ( x + \sqrt{x^2+1} ) = -\log(\sqrt{x^2+1} - x)$
$\cosh^{-1} x = \log (x + \sqrt{x^2-1}) = \log(x - \sqrt{x^2-1})$
$\tanh^{-1} x = \dfrac{1}{2} \log{\dfrac{x+1}{x-1}}$

$\frac{d}{dx}\sinh^{-1} x = \dfrac{1}{\sqrt{x^2+1}},\ \ \frac{d}{dx}\cosh^{-1} x = \dfrac{1}{\sqrt{x^2-1}}, \ \  \frac{d}{dx} \tanh^{-1} x = \dfrac{1}{1-x^2}$

$\int \sinh^{-1} x \ dx= x \sinh^{-1} x - \sqrt{x^2+1}$
$\int \cosh^{-1} x \ dx = x \cosh^{-1} x  - \sqrt{x^2-1}$
$\int \tanh^{-1} x\ dx = x \tanh^{-1} x + \frac{1}{2}\log(1-x^2)$



図:双曲線関数の定義

0 件のコメント:

コメントを投稿