2023年11月29日水曜日

大小関係

よくある問題で,冪数の大小比較というのがある。その例で次のようなものがあった。

$M=\displaystyle \begin{pmatrix} e^e & e^3 & e^\pi \\ 3^e & 3^3 & 3^\pi \\ \pi^e & \pi^3 & \pi^\pi \end{pmatrix}$の9個の数の大小関係を求めよ。
ただし,$e=2.7183 < 3 < \pi=3.1416$はわかっているとする。

各行や各列で比較すると,行番号や列番号が増えると大きくなる。
次に,$M_{12}=e^3$と$M_{21}=3^e$,$M_{23}=3^\pi$と$M_{32}=\pi^3$,$M_{31}=\pi^e$と$M_{13}=e^\pi$を比較する。それぞれ,両者のべきの積の逆数を双方にかけると,$x^\frac{1}{x}$の形での比較に帰着する。この関数の対数をとって$f(x)$とおけば,$f(x) = \frac{\log x}{x},\ f'(x) = \frac{1 - \log x}{x^2}$の形から,$e^\frac{1}{e} < 3^\frac{1}{3} < \pi^\frac{1}{\pi}$である。


図:$f(x) = \log x^{1/x}$とその微分 $f'(x)=(1-\log x)/x^2$のグラフ

したがって,$  3^e < e^3 ,\  \pi^e < e^\pi,\  \pi^3 < 3^\pi $が成り立つ。残るのは,$3^3$と$e^\pi$または$\pi^e$の関係である。これがちょっとわからなかった。仕方がないので,数値的に評価することに。

$\log M_{13}=\pi = 3 + 0.1416$,$\log M_{33} = 3 \log 3 = 3 + 3(\log3 - \log e) = 3 + 3 \log \frac{3}{e}$
$3 \log \frac{3}{e} = 3 \log (1 + \frac{3-e}{e}) \approx 3 \Bigr\{ \frac{3-e}{e}-\frac{1}{2} \bigl( \frac{3-e}{e}\bigr)^2 + \cdots \Bigr\}= 0.295$ 。したがって,$e^\pi < 3^3$

結局,$e^e < 3^e < e^3 <  \pi^e  <  e^\pi <  3^3 < \pi^3 <  3^\pi < \pi^\pi$ となった。


追伸(2023.11.19):ひとつ確認もれがあった。$e^3$ と$\pi^e$の大小関係である。
対数をとると,$3$と$e \log \pi$の比較になる。
$\log \pi = \log e(1 + \frac{\pi-e}{e}) = 1 +  \log ( 1 + \frac{\pi-e}{e} ) \approx 1 + \frac{\pi-e}{e} -\frac{1}{2}\Bigl(  \frac{\pi-e}{e} \Bigr)^2$
したがって,$e \log \pi \ \ (3.1117) \approx \pi -\frac{(\pi-e)^2}{2e}\ \  (3.1086)  > 3$,$\therefore \pi^e > e^3$

0 件のコメント:

コメントを投稿