2023年10月26日木曜日

鏡像法(2)

鏡像法(1)からの続き

鏡像法で電場を求める際の典型的な例は,点電荷と電荷を持たない導体球の系である。
これは次のような条件から幾何学的に求めることができる。

(0) 導体球の表面は等電位面である。
(1) 2次元(3次元)のユークリッド空間で2点からの距離が一定の比$k(\neq1)$となる点の集合は円(球面)である。
(2) 点電荷のつくる電位は測定点までの距離に反比例するので,2つの逆符号で大きさが異なる点電荷のつくる電位の和がゼロになる点は,距離が一定(電荷の絶対値)の比になる点の集合となる。


図:接地した導体球と点電荷が作る電場

原点$(0,0,0)$に中心Oがある半径$R$の接地された導体球面上の点をP$(x,y,z)$とする。球面上の電位はゼロで,$x^2+y^2+z^2=R^2$である。電荷$q$が点A$(0,0,d)\ (d>R)$にあり,電荷$-q'$が点B$(0,0,d')\ \ (d'<R)$に置かれている。

球面上の任意のP点の電位が0になる条件式は,$\displaystyle V(\bm{r})=\dfrac{q}{4\pi\varepsilon_0}\dfrac{1}{\sqrt{x^2+y^2+(z-d)^2}} + \dfrac{-q'}{4\pi\varepsilon_0}\dfrac{1}{\sqrt{x^2+y^2+(z-d')^2}} = 0 $である。したがって,$ R^2+d'^2-2zd' = \bigl(\dfrac{q'}{q}\bigr)^2 (R^2+d^2-2zd) $で,これが$z$によらずに成立するので次の2つの条件式が得られる。

$d' = \bigl(\dfrac{q'}{q}\bigr)^2 d \ $,$R^2+d'^2 =  \bigl(\dfrac{q'}{q}\bigr)^2 (R^2+d^2) \ $,$\therefore R^2 = d d'$,$|\dfrac{q'}{q}| =R/d = d'/R$
つまり,$(q,\ q',\ d,\ d',\ ,R)$の5変数に対して2条件式があるので,3つの量を与えると残りの2つが決定される。例えば,導体球$R$の外に1つの電荷$(q,d)$を置けば,導体球が等電位面となるのに必要なもう一つの電荷$(-q',d')$が定まる。

0 件のコメント:

コメントを投稿