2023年3月13日月曜日

p+11B核融合

核融合科学研究所(NIFS)のプレスリリースによると,大型ヘリカル装置(LHD)の磁場で閉じこめた陽子(軽水素イオン)とホウ素11の核融合反応で生成するα粒子を始めて観測した。p+11B->3αの反応では中性子は発生しないため先進的核融合燃料とよばれ,世界で初めての実証実験となった。

核融合といえば,フランスに設置されている国際熱核融合実験炉(ITER)だ。トカマク型の実証炉でエネルギー増倍比Q=10,閉じ込め時間400秒,出力50万kWを目指し,2025年に初プラズマ達成,2035年にDT運転開始予定だ。

基本反応は,$^2_1 \mathrm{H} (2.014101)+ ^3_1 \mathrm{H}(3.016049) \rightarrow  ^4_2\mathrm{He} (4.008665)+ ^1_0\mathrm{n}(1.008665) + 17.588 \mathrm{MeV}$である。括弧内は原子質量($\mathrm{u}=931.494\mathrm{MeV}$)である。反応前の重陽子とトリチウムが静止しているとして,重心系における反応後の中性子の運動量は,$pc=163\mathrm{MeV}$であり,中性子の運動エネルギーは,$T_n = \sqrt{pc^2+m_n^2c^4}-m_n c^2 = 14.03\mathrm{MeV}$となる。ここで,qcを与えて,Solve[Sqrt[(m_d c^2)^2 + (qc)^2] + Sqrt[(m_t c^2)^2 + (qc)^2] == Sqrt[(m_h c^2)^2 + (pc)^2] + Sqrt[(m_n c^2)^2 + (pc)^2] を解けば,pcが求まる。非相対論的な近似でよければ,放出エネルギーを質量比1:4の逆比に配分すれば運動エネルギーの価が得られる。

この14MeVの中性子が炉壁物質の結晶構造を破壊した上に放射化するので,これに耐えられる核融合炉の炉壁ができるかどうかが一番の課題だと思われる。無理じゃない?中性子による放射化は,核分裂生成物の長寿命放射性物質よりはマシかもしれないが,それでも中性子が湯水のように発生するのはかなり面倒な話だと思う。

一方,今回の実験のパートナーであるTAEテクノロジーズのp+11B非中性子核融合(aneutronic fusion)では,主反応は次のものであり,中性子を発生しない(副反応では発生しうる)。$^1_1 \mathrm{H} (1.007825)+ ^11_4 \mathrm{B}(11.009305) \rightarrow  3 ^4_2\mathrm{He} (4.008665) + 8.682 \mathrm{MeV}$。さらに,エネルギー取り出しは他の核融合炉や核分裂炉のような熱交換ではなく,逆サイクロトロン変換器による直接発電である。それにしても,エネルギー増倍比は,Q=2.7-4.3(偏極陽子の場合)にとどまる。

昔の論文をみると,(p,n)反応,(α,n)反応,(γ,n)反応などの副反応経由での中性子生成もかなりあるらしい。レーザーZピンチによる慣性閉じこめ核融合も結局中性子が問題なので,核融合だからといってクリーンエネルギーという看板を振りかざしすぎるのもどうかと思う。しかも中性子の運動エネルギーでお湯を沸かすという蒸気機関以来の技術なのだから。

なお,プレスリリースでは,時速1500万kmの軽水素をホウ素にぶつけたとある。分かりにくい話だ。LHDで開発してきたプラズマ加速用の2MWの3本の160keV中性水素原子ビームが,プラズマ中に入射されて高エネルギーで閉じこめられた陽子を生成し,これがホウ素と核融合反応した結果の高エネルギーα粒子が観測されたということらしい。


写真:TAE Technologiesの核融合実験炉 Copernicus(TAEより引用)



0 件のコメント:

コメントを投稿