2022年10月19日水曜日

カーリングの原理(2)

カーリングの原理(1)からの続き 

富山大学の対馬勝年先生が,2013年に「氷雪のトライポロジー」というまとまったレポートを出していた。 ただ,カーリングがカールする根拠としてあげた左右に錘のついた棒のモデルや角度方向の摩擦係数の議論は理解できなかった。

そこで,カーリングのカールに関するこれまでの議論を少し復習してみる。

カーリングのストーンの質量は,$M=20{\rm \ kg}\ $であり,氷上に接するのはランニングバンドとよばれる狭い円環部分である。その半径は$\ R=0.1 {\rm \ m}\ $だ。そこで,ストーンを円環によってモデル化すると,中心の周りの慣性モーメントは,$I = M R^2 = 0.2 {\rm \ kg m^2}\ $となる。ストーンの初速度は,$u_0 = 2 {\rm \ m/s}$,回転を与えた場合の初角速度は,$\omega_0 = 1 {\rm \ rad/s}\ $とする。つまり回転方向の初速度は,$w_0=R \omega = 0.1 {\rm \ m/s}\ $となる。

摩擦のメカニズムを,動摩擦力$\bm{F}\ $ によって現象論的に表現すると,その力は,ストーンと氷の接点の相対速度ベクトル$\bm{v}\ $とは逆向きで,大きさが垂直抗力に比例するものとなる。その比例定数が動摩擦係数 $\ \mu\ $になり,必要ならばこれに速度依存性を導入する。つまり,$\bm{F} =- \mu(v) \ Mg \ \hat{\bm{v}} = -\dfrac{\mu(v)}{v}\ Mg\  \bm{v} \rightarrow -\dfrac{\mu(v)}{v^p}\ Mg\  \bm{v}$。

なお,動摩擦係数の値を$\mu = 0.01 \ $のオーダーとすれば,動摩擦力の大きさは,$F = \mu \ M g = 2 {\rm \ N \ } $となる。ストーンの初期運動エネルギー$K_0$が,停止するまでに摩擦力がする仕事 $F d$と等しいと置けば,$K_0 = \frac{M}{2}u_0^2 = F d \ $から 停止距離は $ \ d= \frac{K_0}{F} = 20 {\rm \ m\ }$ である。

図:カーリングストーンの円環モデル

図の角度$\ \theta \ $ の位置の円環要素$ \delta M(\theta) $の氷に対する相対速度ベクトルは,$\bm{v} = (v_x, v_y)  = (u_x - w \sin \theta, \  u_y + w \cos \theta) \ $であり,その大きさは,$v = \sqrt{v_x^2+v_y^2} = \sqrt{ u_x^2 + u_y^2 + w^2 - 2w (u_y \cos \theta - u_x  \sin \theta ) }\ $である。したがって,摩擦力は,$\bm{F} = - \frac{\mu}{v} M g \  (u_x - w \sin \theta, \  u_y + w \cos \theta) \ $ となる。

また,この円環要素に働く摩擦力のトルクの大きさは,
$ N =  (\bm{R} \times \bm{F})_z = R_x F_y - R_y F_x = R\  ( \cos \theta F_y - \sin \theta F_x) $
$  \quad = - \frac{\mu}{v} R M g \ (w + u_y \cos \theta - u_x \sin \theta )$

0 件のコメント:

コメントを投稿