2022年4月28日木曜日

モル比熱

かつて 中学校で熱について学んだとき,もっとも重要な基本法則は熱量と温度と比熱の関係だった。これが重要であることは,大学の熱力学でもそうなのだけれど,あくまでも熱力学第一法則と第二法則の脇役であって,電磁気学のオームの法則のようなものだ。

物質量が$\ n\ $モルの体系に熱量$\ d'Q\ $を与えたときに,温度が$\ dT\ $だけ増えたとする。系の温度を1K上げるために必要な熱量である熱容量$\ {\rm [J/K]}\ $は,$\frac{d'Q}{dT} $で与えられる。このとき,系の体積を一定にするならば定積熱容量 $C_V$,系の圧力を一定にするならば定圧熱容量 $C_p$ とよぶ。これらは物質量に比例する示量変数である。

熱力学の第一法則より $\ d'Q = dU + pdV = dU + d(pV)-V dp\ $が成り立つ。したがって,$C_V = \frac{dU}{dT}$,$C_p=\frac{dU}{dT} + \frac{d(pV)}{dT}$となる。ここで,理想気体を考えると,状態方程式 $\ pV = n R T\ $が成り立ち,$C_p=C_V + n R$と表わされる。

単位質量あるいは単位物質量あたりの熱容量が比熱容量比熱となる。定積モル比熱は$c_V=\frac{1}{n}C_V$,定圧モル比熱は$c_p=\frac{1}{n} C_p$と小文字の$c$で表わすことになるが,教科書を眺めると,そのあたりの定義や記号の使い方は必ずしもそろっているわけではなかった。

0 件のコメント:

コメントを投稿