2021年11月23日火曜日

三角関数の積

その鈴木貫太郎の問題で次の式の値を求めよというのがあった。

$\cos{\dfrac{\pi}{33}}\cos{\dfrac{2\pi}{33}}\cos{\dfrac{4\pi}{33}}\cos{\dfrac{8\pi}{33}}\cos{\dfrac{16\pi}{33}}$

三角関数の積和の式を繰り返し使うのか,それにしても面倒だろう,どうするのかなあと解答を見ると,$\sin{\dfrac{\pi}{33}}$をかけて倍角の公式からドミノ倒しのようにしてあっという間に解けてしまった。なるほどね。

そこでMathematicaで一般化してみた。

f1[n_, m_] := Product[Cos[2^k Pi/(2^n + 1)], {k, 0, m}] // Simplify
g1[j_] := Table[f1[j, i], {i, j - 1, 20, j}]
g1[5]
{1/32, -(1/1024), 1/32768, -(1/1048576)}

f2[n_, m_] := Product[Cos[2^k Pi/(2^n - 1)], {k, 0, m}] // Simplify
g2[j_] := Table[f2[j, i], {i, j - 1, 20, j}]
g2[5]
{-(1/32), -(1/1024), -(1/32768), -(1/1048576)}


0 件のコメント:

コメントを投稿