2020年3月5日木曜日

湖北省(武漢以外)のデータ

新型コロナウイルス感染症の事例数が最も多い地位は中国の湖北省であるが,武漢のデータは特異的な値を示している(高い死亡率)。そこで,モデルの妥当性を検討するためには湖北省(武漢以外)のデータを用いるのが適当だ。tencentのニュースサイトには湖北省(武漢以外)のデータが報告されている。

湖北省(武漢以外)の新規感染者数データの実測値 K(t) にはバラつきがあるが,次のような傾向を持っている。
・K(t)は40日の範囲で0から増加してその後減衰して0に近づく。
・そのピークはt=14日のK(t)=1200人である。
・この40日間の感染者数の累計数は$\int K(t) dt$ = 17,800人である。

この性質をみたす簡単な近似関数を求めておけば,感染モデルとの比較が容易になる。K(t)の解析的な近似関数をf(t)(一日に報告される新規感染者の数)とし,その積分をg(t)(新規感染者の累計数)とする。

目の子で探すと,tを報告開始からの日数として次のようになる。
$f(t) = 3 t^4 \exp(-t/3)$
f'(12)=0, f(12)=1140, g(40)=17400 など,観測データをおおむね再現している。

感染症の数理シミュレーション(3)で用いたSIIDR2モデルでは,$u_6$がg(t)に対応する。なお,$u_6(t)$は重症感染者数$u_3(t)$の変化分から減少項を除いたものを積分したものである。


図1 湖北省(武漢以外)の新規/累計感染者数の近似関数,上がg(t),下がf(t)(横軸は日,縦軸は1万人当たり)

湖北省(武漢以外)での1万人当りの累計感染者数(t=40)は3.7人,新規感染者数(t=peak)は0.25人,死亡数(t=40)は0.12人である。

P. S.
なお,死亡数についても20日をピークとする滑らかな関数となっているので,新規/
累計死亡数の近似関数を求めることができる。それぞれh(t), i(t)とすると,
$h(t) = 30 \sin^2[ \pi / 40 t]$で与えられる。ピーク時の一日あたりの死亡数は30人であり,40日目にはおおむね収束に近づいている。これをグラフにすると次のようになる。

図2 湖北省(武漢以外)の新規/累計死亡数の近似関数,上がi(t),下がh(t)(横軸は日,縦軸は1万人当たり)

0 件のコメント:

コメントを投稿